М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
дина372
дина372
01.03.2023 05:39 •  Алгебра

Берылген сандардын медианасын табындар

👇
Открыть все ответы
Ответ:
125894
125894
01.03.2023
1) 56 км/ч * 4 ч= 224 км - пройдёт первый поезд за 4 часа.
2) 584 - 224= 360 км - оставшийся путь.
Теперь необходимо составить уравнение.
  Пусть время за которое встретятся поезда х часов, тогда первый поезд за это время проедет 56*х, а второй 64*х, всего они проедут 56*х+64*х, что по условию задачи будет  360 км. Составим и решим уравнение:
 56*х+64*х=360
х( 56+64) = 360 
х = 360/120
х = 3 часа. проедут поезда до своей встречи
1) 4 + 3 = 7 часа - будет в пути первый поезд.
ответ: первый поезд будет в пути 7 часов, а второй 3 часа.
4,6(11 оценок)
Ответ:
валя502
валя502
01.03.2023
1)
а) разобьём выражение под знаком логарифма 5 - 2x = 1 + (4 - 2x)
б) знаменатель увеличим в два раза 2*(2 - х) = 4 - 2х, одновременно увеличим в 2 раза числитель
в) выражение привели к одному из следствий второго замечательного предела
\lim_{x \to \inft2} \frac{ln(5-2x)}{2-x} =\lim_{x \to \inft2} \frac{ln(1+(4-2x))}{2-x} =\lim_{x \to \inft2} 2*\frac{ln(1+(4-2x))}{4-2x} = \\ \\ =2* \lim_{x \to \inft2} \frac{ln(1+(4-2x))}{4-2x} =2*1

2.
а) представим 2 - cos3x = 1 + (1 - cos3x)
б) показатель умножим и разделим на (1 - cos3x)
в) получившийся показатель разобьём на два множителя:
\frac{1}{1-cos3x} * \frac{1-cos3x}{ln(1+ x^{2} )}
г) в квадратных скобках имеем второй замечательный предел
д) используя формулу косинуса двойного угла, выразим cos3x через синус от х/2 в квадрате:
cos3x=1-2sin^{2} \frac{x}{2} \\ 1-cos3x=2sin^{2} \frac{x}{2}
е) числитель и знаменатель делим на х²
ж) привели к следствию из второго замечательного предела, где натуральный логарифм, затем привели к первому замечательному пределу, где синус

\lim_{x \to \infty} (2-cos3x)^{ \frac{1}{ln(1+ x^{2} )} }=\lim_{x \to \infty} (1+(1-cos3x))^{ \frac{1}{ln(1+ x^{2} )} }= \\ \\ =\lim_{x \to \infty} [(1+(1-cos3x))^{\frac{1}{1-cos3x}} ]^{ \frac{1-cos3x}{ln(1+ x^{2} )} }= \\ \\ =\lim_{x \to \infty} [(1+(1-cos3x))^{\frac{1}{1-cos3x}} ]^{\lim_{x \to \infty} \frac{1-cos3x }{ln(1+ x^{2} )} }= \\ \\ e^{^{\lim_{x \to \infty} \frac{1-cos3x}{ln(1+ x^{2} )} }} =

=e^{^{\lim_{x \to \infty} \frac{ \frac{2sin^{2} \frac{x}{2}}{ x^{2} } }{ \frac{ln(1+ x^{2})}{ x^{2} } }} = e^{^{\lim_{x \to \infty} \frac{ \frac{2sin^{2} \frac{x}{2}}{ x^{2} } }{1 }}} = e^{^{\lim_{x \to \infty} \frac{2* \frac{9}{4} sin^{2} \frac{x}{2}}{ ( \frac{3}{2} x)^{2} } }} = e^{ \frac{9}{2} }
4,7(73 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ