5) 500/3*Π
Объяснение:
Объем шара выражается формулой:
V = 4/3*Π*R^3
Образующая конуса L, радиус конуса r и высота H образуют прямоугольный треугольник.
Гипотенуза L= 5, один катет H=2,5, второй катет по теореме Пифагора
r = 5*√3/2 = 2,5*√3
Это радиус основания конуса.
Углы в этом треугольнике 90°, 30° и 60°, причем 60° находится напротив радиуса конуса.
Теперь рассмотрим сферу.
В ней проходит два радиуса, один из центра сферы до вершины конуса, второй из центра сферы до любой точки на окружности конуса.
Радиусы одинаковые, и получается равнобедренный треугольник из R, R и L
При этом угол между R и L равен 60°. Значит, треугольник равносторонний.
Это значит, что R = L = 5 см.
Объем шара
V = 4/3*Π*R^3 = 4/3*Π*5^3 = 4/3*Π*125 = 500/3*Π
В решении.
Объяснение:
2) Пусть аn есть арифметическая прогрессия. Если а1=-10 и а3=-4, с характеристического свойства найдите а2. Определите значение девятого члена прогрессии.
а) а₁ = -10;
а₃ = -4;
а₂ = ?
а₂ = (а₁ + а₃)/2
а₂ = (-10 - 4)/2
а₂ = -14/2
а₂ = -7;
б) a₉ = ?
an = a₁ + d(n - 1);
а₉ = а₁ + d(n - 1);
Найти d:
d = a₂ - a₁;
d = -7 - (-10)
d = -7 + 10
d = 3;
а₉ = а₁ + d(n - 1);
а₉ = (-10) + 3(9 - 1)
а₉ = (-10) + 24
а₉ = 14.
3) в арифметической прогрессии (аn) известно, что d=2,a1=5. Найти s13.
а₁ = 5;
d = 2;
S₁₃ = ?
Формула:
Sn = ((2a₁ + d(n - 1))/2 * n
S₁₃ = (2 * 5 + 2 * 12)/2 * 13
S₁₃ = (10 + 24)/2 * 13
S₁₃ = 17 * 13
S₁₃ = 221.