В Ноттингеме шериф проводит состязания по стрельбе из лука, чтобы выманить Робин Гуда. Соревнования проходят в два тура. Те, кто наберут больше за первый тур, получат призы. А единственный главный приз, золотую стрелу с серебряным наконечником, получит тот, кто наберёт больше всех очков в сумме, причём если таких стрелков по итогам двух туров будет несколько, из них выберут лучшего. Состязающиеся имеют каждый свой номер. Номер
 тур
 тур
 5059
 11
 11
 5060
 30
 42
 5061
 16
 33
 5062
 11
 43
 5063
 17
 28
 5064
 46
 14
 5065
 27
 47
 5066
 31
 41
 5067
 43
 45
 5068
 40
 44
 5069
 19
 11
 5070
 19
 22
 Любой из получивших приз может быть Робин Гудом. Именно этих стрелков шериф приготовился поймать. Сколько призов получили стрелки?
 ответ: приз(-ов, -а).
                                                            
                             
                         
                    
=> a³+b³+c³=-(3a²b+3ab²) => a³+b³+c³=-3ab(a+b) => a³+b³+c³=-3ab(-c) =>
=> a³+b³+c³=3abc
2) Обратное утверждение:
Если a³+b³+c³=3abc, то a+b+c=0 (думаю, имеется в виду, что a+b+c обязательно будет равно 0, и не существует других вариантов).
Из утверждения следует, что c³-3abc+a³+b³=0. Допустим, известны числа a и b. Тогда c³-3abc+a³+b³=0 является кубическим уравнением относительно c. Как известно, любое кубическое уравнение с рациональными коэффициентами имеет ровно три корня (необязательно действительных). Отсюда следует, что при фиксированных a и b и при 3-х вариантах c получится три варианта для суммы a+b+c, одним из которых является a+b+c=0.
Таким образом, пункт 1 является верным. Пункт 2 не является верным.
Найдем другие два варианта для c.
Известно, что в уравнении c³-3abc+a³+b³=0 одним из решений является c=-(a+b), так как при подстановке в уравнение получится тождество. Разложим левую часть уравнения на скобки:
c³-3abc+a³+b³=(a+b+c)(c²-c(a+b)+a²-ab+b²).
Решим уравнение c²-c(a+b)+a²-ab+b²=0 относительно c:
D=(-(a+b))²-4(a²-ab+b²)=a²+2ab+b²-4a²+4ab-4b²=-3(a²-2ab+b²)=-3(a-b)²≤0
c1,2=((a+b)+-√3(a-b)*i)/2, где i²=-1, i - мнимая единица.
Если D=0, то a=b, а выражение для c примет такой вид: c=(a+b)/2=(a+a)/2=a. Получим, что в этом случае a=b=c, а сумма a+b+c=3a для любого a.
Если D<0, то c1=(a+b)/2+i√3(a-b)/2,
c2=(a+b)/2-i√3(a-b)/2.
А возможные варианты для суммы станут такими:
a+b+c=a+b+(a+b)/2+i√3(a-b)/2=3(a+b)/2+i√3(a-b)/2,
или
a+b+c=a+b+(a+b)/2-i√3(a-b)/2=3(a+b)/2-i√3(a-b)/2