Это задача на наибольшее(наименьшее) значение функции. План наших действий: 1) ищем производную 2) приравниваем её к нулю, решаем получившееся уравнение 3) смотрим: какие корни попали в указанный промежуток 4) вычисляем значения данной функции в этих корнях и на концах промежутка. 5) пишем ответ начали? 1) y' = 2Сosx + 24/π 2) 2Сosx + 24/π = 0 2Сosx -= - 24/π Сosx = - 12/π нет решений 3) решений нет, значит, в функцию подставим концы промежутка и найдём из ответов наибольшее значение. 4) а) х = -5π/6 у = 2Sin(-5π/6) +24*(-5π/6)/π + 6 = -2*1/2 - 20 +6 = -1 -20 +6 = -13 б) х = 0 у = 0+0 +6 = 6 ответ: max y = 0
При x = 0 функция не существует на множестве действительных чисел. Раскроем модули при x≠0. 1) При x < 0: y = (x+2)|x+1| При x∈(-∞;-1] y = -(x+2)(x+1) При x∈[-1;0) y = (x+2)(x+1) 2) При x > 0: y = (x+2)|x-1| При x∈(0;1] y = -(x+2)(x-1) При x∈[1;+∞) y = (x+2)(x-1) График приложу отдельной картинкой. Будем пересекать этот график горизонтальной прямой y=m. 1) При m∈(-∞;0) одна точка пересечения 2) При m=0 три точки пересечения 3) При m∈(0;1/4) пять точек пересечения 4) При m=1/4 четыре точки пересечения 5) При m∈(1/4;2) три точки пересечения 6) При m∈[2;+∞) одна точка пересечения, так как точка сращения левой и правой частей функции является точкой устранимого разрыва (поэтому при m=2 не 2 точки пересечения, а одна). ответ: m=1/4.