ответ:Объяснение:Предположим, что клетки квадрата n × n удалось раскрасить таким образом, что для любой клетки с какой-то стороны от неё нет клетки одного с ней цвета. Рассмотрим тогда все клетки одного цвета и в каждой из них нарисуем стрелочку в том из четырёх направлений, в котором клетки того же цвета нет. Тогда на каждую клетку «каёмки» нашего квадрата будет указывать не более одной стрелки. Так как клеток каёмки всего 4n – 4, то и клеток каждого цвета не более 4n – 4. С другой стороны, каждая из n² клеток нашего квадрата раскрашена в один из четырёх цветов, то есть n² ≤ 4(4n – 4). Для решения задачи теперь достаточно заметить, что последнее неравенство неверно при n = 50. Несложно убедиться, что оно неверно при всех n ≥ 15, и, следовательно, утверждение задачи верно уже в квадрате 15 × 15 — а заодно и в любом большем квадрате.
Решение: Обозначим время за которое теплоход проходит расстояние от А до Б по течению реки за (t), тогда против течения реки из Б в А, согласно условия задачи, теплоход проходит расстояние за время 1,4t Общее время туда и обратно составляет 24 часа, что можно записать: t+1,4t=24 2,4t=24 t=24/2,4 t=10 (час) - за это время теплоход проходит расстояние от А до Б 1,4*10=14(час) - за это время теплоход проходит расстояние от Б до А Обозначим скорость теплохода за (х) км/час, а скорость течения реки за (у) км/час, тогда, по то течению реки от А до Б теплоход проходит расстояние: S= (х+у)*10 км, (1) а против течения реки от Б до А теплоход проходит расстояние: S=(х-у)*14 км (2) Приравняем (1) и (2) : (х+у)*10=(х-у)*14 10х+10у=14х-14у 10х-14х=-14у-10у -4х=-24у разделим левую и правую части уравнения на (-4) х=6у Скорость плота равна течению реки (y), поэтому плот плывёт по течению реки за время: t=S/y Отсюда: S=y*t (1) А теплоход проходит по течению реки от А до Б за время 10 часов, равное: 10=S/(6y+y) или 10=S/7y Отсюда: S=7y*10 (2) Приравняем (1) и (2) y*t=7y*10 t=7y*10/y t=70y/y t=70 (час) - это время плот проплывает расстояние от А до Б
если не ошибаюсь