1) Імовірність випадення числа меншого від 5 = 4/6=2/3, бо числа 1 2 3 4 задовольняют умову, а всього на кубику 6 чисел.
Імовірність випадення числа більшого за 4 = 2/6=1/3, бо числа 5 6 задовольняють умову, а всього на кубику 6 чисел.
Для отримання результату помножимо ймовірність виконання умови при першому кидку на ймовірність виконання умови при другому кидку: 2/3*1/3=2/9
2)Імовірність виконнная умови 5/6 при першому кидку і 1/6 при другому. Отримуємо 1/6*5/6=5/36
3)Імовірність випадення на кубику при першому киданні числа більшого ніж при другому киданні дорівнює 1/2-1/6=1/3, оскільки 1/6-імовірність випадення дубля. Наприклад, перший раз випало число 1. Імовірність випадення того самого числа при другому киданні дорівнює 1/6 (6 варіантів 1 з яких нас задовольняє).1/2 ми вказуємо, бо при киданні використовується один і той самий кубик, і кількість випадків, які нас задовольняють удвічі менша за тотальну кількість імовірних подій, тобто імовірність симетрична.
Отже, відповідь: 1/3
2. Число делится на 4, если оно четное и если число составленное из последних 2-х цифр данного числа делится на 4.
3. Число делится на 3, если сумма цифр данного числа делится на 3.
Число не может заканчиваться цифрой 5, т.к. оно не будет делиться на 4. Цифру 5 вычеркиваем. Получили число 8453762, осталось вычеркнуть 2 цифры.
Допустим, число заканчивается цифрой 2, число составленное из последних 2-х цифр, должно делиться без остатка на 4.
62 на 4 не делится, а 72 - делится (72:4=18). Вычеркиваем цифру 6, получили число 845372, которое делится на 4.
Проверяем, делится ли оно на 3:
8+4+5+3+7+2=29. 29 на 3 не делится. Цифры 7 или 2 вычеркнуть нельзя, т.к. тогда число снова не будет делиться на 4. Осталось вычеркнуть одну из цифр 8, 4, 5 или 3.
29-8=21 - делится на 3
29-4=25 - не делится
29-5=24 - делится
29-3=26 - не делится.
Можем вычеркнуть цифру 8, тогда получим число 45372, которое делится на 12.
Или можем вычеркнуть цифру 5, получим число 84372, которое тоже делится на 12.
По этой же схеме можно найти число 84576.
Выбирайте любое :)