АВСД - равнобокая трапеция, АВ=СД, ВС=6 см, ∠АВС=120° , ∠САД=30°. Найти АС.
Так как ∠АВС=120°, то ∠ВАД=180°-120°=60° ,
∠САД=30° ⇒ ∠ВАС=∠ВАД-∠САД=60°-30°=30° .
Значит диагональ АС - биссектриса ∠А .
∠АСВ=∠САД=30° как внутренние накрест лежащие при АД || ВC и секущей АС ⇒ ΔАВС - равнобедренный , т.к. ∠ВАС=∠АСВ .
Значит, АВ=АС=6 см .
Опустим перпендикуляры на основание АД из вершин В и С: ВН⊥АС , СМ⊥АД , получим прямоугольник ВСМН и два треугольника АВН и СМД .
Рассмотрим ΔАВН: ∠ВНА=90°, ∠ВАН=∠ВАД=60° , АВ=6 см ⇒
∠АВН=90°-80°=30°
Против угла в 30° лежит катет, равный половине гипотенузы ⇒ АН=6:2=3 см.
Так как ΔАВН=ΔСМД (по гипотенузе АВ=СД и острому углу ∠ВАД=∠АДС), то МД=АН=3 см.
НМ=ВС=6 см как противоположные стороны прямоугольника ВСМН.
АД=АН+НМ+МД=3+6+3=12 см.
ответ
1
Helper211
ответ: 0,88
Пошаговое объяснение:
Формула для приближенного вычисления значения функции в точке с дифференциала: f(x)=f(a+dx)≈f(a)+f'(a)dx
где x - заданная точка,
a - вс точка, в которой удобно вычислять значение функции и производной,
dx - разность между заданной точкой и вс
Ближайшая к 0,96 точка, где легко вычислить значение функции и ее производной, это 1 (в данном случае функция - ).
dx = x - a = 0,96 - 1 = -0,04
f(a) = f(1) = 1;
f'(x)=
f'(a)=f'(1)=3;
f(x)=f(a+dx)≈f(a)+f'(a)dx:
Объяснение: