Пусть длина наименьшей стороны клумбы х м, так как вторая сторона длиннее на 5м, то ее длина составит (х+5)м. Вокруг клумбы идет дорожка шириной 1 м, значит длина стороны дорожки составит(1+х+5+1)=(х+7)м - широкая сторона, и меньшая сторона составит (1+х+1)м=(х+2)м. Площадь дорожки составляет 26кв.м. и складывается из площади 4-ч прямоугольников, из которых стороны двух длинных прямоугольников равны по (х+7)м и 1м. Площадь этих прямоугольников равна и составляет S1.2=1*(х+7)м=(х+7)м, и 2 прямоугольника со сторонами 1м и (х+2)м, и площади их равны 1*(х+2)м= (х+2)м. Вся площадь дорожки составит 2*(х+7)+2*(х+2)=26. Делим обе части уравнения на 2, получаем(х+7)+(х+2)=132х+9=132х=13-92х=4х=2Таким образом наименьшая сторона клумбы равна 2м, тогда наибольшая 2+5=7м
Понятно, что в больших коробках и в маленьких коробках количество книг одинаковое и равно половине от общего количества книг (примем за Х). Неодинаково количество больших и маленьких коробок. Пусть больших коробок было А штук, а меленьких В штук. Тогда 24*А - количество книг в больших коробках, 15*В - количество книг в маленьких коробках. И там, и там половина от общего количества книг (по условию). То есть, 24*А = 15*В = Х/2. Мы знаем, что больших коробок на 3 меньше, значит А - 3 = В. Подставим это значение В в наше первое уравнение: 24А = 15(А-3) 24А = 15А-45 А = 5 - столько было больших коробок, а книг в них, соответственно, 120 (24 * 5). Маленьких коробок было 8 (5 + 3), и книг в них тоже 120. Следовательно, всего книг 120 * 2 = 240. ответ: 240 книг.