Объяснение:
Как я понял, задача состоит в нахождении наибольшего значения функции. Для это необходимо найти производную этой функции и приравнять ее к 0 .
Правила взятия производной, необходимые для решения этого примера:
Эти правила можно описать следующим образом :
· Производная от суммы функций равна сумме их производных.
· Производная степенной функции равна произведению показателя степени на функцию, с показателем степени на 1 меньше исходного.
· Производная от постоянной величины равна 0.
· Постоянный множитель можно вынести за знак производной.
Тогда производная заданной функции равна :
Приравняем производную к 0 и найдем корень уравнения:
Подставим найденное значение в исходную функцию:
Получили, что наибольшее значение функции равно 7 в точке x=2
Пусть х - цифра десятков;
у - цифра единиц .
По условию цифра десятков, увеличенная на 2, в 2 раза больше цифры единиц.
Исходя из этого, получаем первое уравнение:
х +2 = 2у
Ещё в условии сказано, что если цифры десятков и единиц поменять местами, то полученное число будет меньше первоначального на 27, т.е.
(10х+у) > (10у+х) на 27
Получаем второе уравнение:
(10х+у ) - (10у+х) = 27
Упростим это уравнение:
9х - 9у = 27
х - у = 3
Решаем систему:
{x + 2 = 2y
{x - y = 3
Из второго уравнения выразим х:
х = у + 3
Подставим в первое:
у + 3 + 2 = 2у
у = 5 - цифра единиц
х = 5 + 3
х = 8 - цифра десятков;
ответ: 85