1) (х-1)(х+7)
1) (х-1)(х+7)х*х+7х-х-7
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-7
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+8
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+83) (х²-2х)(2х+4+х²)
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+83) (х²-2х)(2х+4+х²)х²(2х+4+х²)-2х(2х+4+х²)
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+83) (х²-2х)(2х+4+х²)х²(2х+4+х²)-2х(2х+4+х²)2х³+4х²+х⁴-4х²-8х-2х³
1) (х-1)(х+7)х*х+7х-х-7х²+7х-х-7х²+6х-72) (6х+4)(2-3х)6х*2-6х*3х+4*2-4*3х12х-18х²+8-12х-18х²+83) (х²-2х)(2х+4+х²)х²(2х+4+х²)-2х(2х+4+х²)2х³+4х²+х⁴-4х²-8х-2х³х⁴-8х
∫ x dx - 3∫ x^2 dx=1/2 x^2 - 3* 1/3 x^3= 1/2 x^2 - x^3 на пределах интегрирования получится 1/2 (2^2-1)- (2^3-1)=1/2*3-7 = -11/2
2. Здесь тоже довольно просто- нужно знать производную тангенса.
∫1/Cos^2(2x)dx= \делаем замену переменных: 2x=t, 2dx=dt\ = 1/2 ∫ 1/Cos^2[t] dt= 1/2 Tan[t], но уже на пределах от нуля до pi/3- посмотри на замену переменных. Тогда интграл будет равен 1/2(Tan[pi/3]-Tan[0])=√3/2
3. Здесь тоже не так трудно, как может показаться на первый взгляд
∫(2-3x)^5 dx = -1/(3*6) (2-3x)^6 на пределах интегрирования даст
-1/18 [ (2-3*1)^6-(2-3(1/3))^6 ] =-1/18 (1- 1)=0
4. Воспользовавшись четностью подынтегральной функции, можно записать как 2 интеграла от нуля до 3
2∫√(9-x^2)dx= \ x=3sint, dx=3cost dt\ = 2∫√(9-9sin^2(t)) cos(t) dt= 6∫√(1-sin^2(t)) cost dt= 18∫cos^2(t)dt=9∫(1+cos(2t))dt=9t+9/2sin(2t) на подстановке даст, учтя смену пределов интегрирования (t=pi/2, t=0) получим 9pi/2
5. По сути это уравнение в слегка усложненной записи.
Разделением интегралов на 2 и интегрированием, зная, что ∫x^p dx= 1/(p+1) * x^(p+1), получим 1/4(x^4)+5/2 x^2
На пределах интегрирования это даст
1/4( (a+2)^4- a^4) + 5/2 ((a+2)^2-a^2) = 4+8a+6a^2+2a^3 + 10+10a = 14+18a+6a^2+2a^3 = 0 по условию