М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anastasia69smirnova
anastasia69smirnova
25.01.2021 14:40 •  Алгебра

, Відстань між пристанями А і Б дорівнює 36 км. Моторний човен проходить з А в Б і повертається назад за 5 годин. Знайдіть власну швидкість течії, якщо швидкість човна 15км/год​

👇
Открыть все ответы
Ответ:
Mariyam005
Mariyam005
25.01.2021

Система линейных уравнений с двумя неизвестными

x + y = 5

2x - 3y = 1

Система линейных ур-ний с тремя неизвестными

2*x = 2

5*y = 10

x + y + z = 3

Система дробно-рациональных уравнений

x + y = 3

1/x + 1/y = 2/5

Система четырёх уравнений

x1 + 2x2 + 3x3 - 2x4 = 1

2x1 - x2 - 2x3 - 3x4 = 2

3x1 + 2x2 - x3 + 2x4 = -5

2x1 - 3x2 + 2x3 + x4 = 11

Система линейных уравнений с четырьмя неизвестными

2x + 4y + 6z + 8v = 100

3x + 5y + 7z + 9v = 116

3x - 5y + 7z - 9v = -40

-2x + 4y - 6z + 8v = 36

Система трёх нелинейных ур-ний, содержащая квадрат и дробь

2/x = 11

x - 3*z^2 = 0

2/7*x + y - z = -3

Система двух ур-ний, содержащая куб (3-ю степень)

x = y^3

x*y = -5

Система ур-ний c квадратным корнем

x + y - sqrt(x*y) = 5

2*x*y = 3

Система тригонометрических ур-ний

x + y = 5*pi/2

sin(x) + cos(2y) = -1

Система показательных и логарифмических уравнений

y - log(x)/log(3) = 1

x^y = 3^12

Объяснение:

4,8(47 оценок)
Ответ:
sergeywrest51
sergeywrest51
25.01.2021

0).выделите корень уравнения, принадлежащий решению неравенства

х2  + 59х –122 ≤ 0.

решение: 1 способ.  3√х + 34 -  3√ х – 3 = 1

  (3√х + 34)3  - 3 (3√х + 34)2  3√ х – 3 + 3 (3√х + 34)  (  3√ х – 3)2  - (  3√ х – 3)3  = 1

(х + 34) - 3 (3√х + 34)  3√ х – 3 (3√х + 34)  -  3√ х – 3) – ( х – 3) = 1

    37 – 3  3√(х +34)(х-3) = 1

3√ х2  + 31х – 102 = 12

х2  + 31х – 102 =1728

х2  + 31х - 1830 = 0

х1= 30; х2= - 61 ответ: 30; - 61

проверка показывает, что оба числа являются корнями уравнения.

  2 способ.

  3√х + 34 -  3√ х – 3 = 1

    3√х + 34 = 1 +  3√ х – 3

  (  3√х + 34)3  = (1 +  3√ х – 3)3

х +34 = 1 + 33√х – 3 + 3(  3√ х – 3)2  + х – 3

  3√ х – 3 =а, то 3а2  + 3а – 36 = 0

а2  + а – 12 = 0

а1=3, а2=-4

3√ х – 3 =3, х=30

  3√ х – 3 = -4, х = - 61 ответ: 30; - 61

3 способ.

3√х + 34 -  3√ х – 3 = 1

х + 34 =у3, х – 3 =а3

  х + 34 =у3,

х – 3 =а3,

у – а = 1

37 = у3  – а3  ; у3  – а3= (у – а)(у2  +уа +а2)= (у – – а)2  +3уа)

37 = 1(1 + 3уа); уа =12.

  получаем, уа =12, у=4, а= 3 или у =-3, а = -4

у – а = 1

откуда, х – 3 = 27, х1=30

х – 3 = -64, х2  = - 61 ответ: 30; - 61

2.решите неравенство методом введения новой переменной: х - √х – 2 ≤ 0

решение: √х =а, а2  – а – 2≤ 0,

  + - +

  -1 2

- 1 ≤ а ≤ 2, - 1 ≤ √х ≤ 2, 0 ≤ х ≤ 4

3. решите неравенство по алгоритму: g(х)≥0

√f(х) ≤ g(х) ↔ f(х) ≥0

  f(х) ≤ g2(х)

√х2  – 3х – 18 < 4 – х, 4 – х ≥0,

х2  – 3х – 18 ≥0

х2  – 3х – 18 < 16 – 8х + х2

  х ≤ 4

х2  – 3х – 18 ≥0

х < 6,8

ответ: (-∞; - 3]

4. решите неравенство по алгоритму: g(х)≥0

√f(х) ≥ g(х) ↔ f(х) ≥ g2(х)

  f(х) ≥0

g(х) < 0

√ х – 2 < х – 4, х – 4> 0 или х – 4 ≤0

х – 2 > х2  – 8х + 16 х - 2≥0

х € (4; 6) х € [2; 4]

ответ: [2; 6)

  для решения. 1. решите уравнения, используя свойство корня n-ой степени: √ 11 + 3х – 5х2  = 3 ;   5√ х4  - 49 = 2 ; √ х2  –16 = - √ х – 4; (х2  – 4) √х + 1 = 0; √ 7 +  3√( х2  +7) = 3. найдите целый корень. найдите произведение корней. найдите сумму корней.

2. решите уравнение методом введения новой переменной: х2  + √ х2  +20 = 22.

3.решите уравнение методом умножения на сопряженное выражение:

√ 2х2  + 8х +7 - √ 2х2  – 8х +7 = 2х.

4. решите уравнение методом разложения подкоренного выражения на множители:

√ 2х2+ 5х +2 - √ х2  + х – 2 = √ 3х + 6 .

5. решите уравнение методом выделения полного квадрата в подкоренном выражении:

√ х + 5 + 2√ (х +4) - √ х + 8 - 4√( х +4) = √ х +4 .

7. решите неравенства:

√ - х2  – 3х +4 > 2;   5√х5  +х2  – 4 > х; 5х – 17 √х+5 + 31 < 0 ;

√х +4 ≥ 5 - √9 - х ; √х- 3 •  5√ 5 – х ≥0 ; √ х2  – 3х – 18 < 4 – х; √ х2  + 3х – 18 > 2х +3.

4,6(80 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ