Множество значений функции y = f(x) на некотором интервале x представляет собой множество всех значений, которые данная функция принимает при переборе всех значений x∈X.
Мы знаем, что производная функции будет положительной для всех значений x, расположенных в интервале [-1; 1], то есть на протяжении всей области определения функция арксинуса будет возрастать. Значит, самое маленькое значение она примет при x, равном -1, а самое большое – при x, равном 1
Таким образом, область значений функции арксинус будет равна E(arcsin x)=[-
а) - 2 ответа
б) - нет ответов
в) - 2 ответа
г) - 2 ответа
Объяснение:
а) х⁴ - 81 = 0
Перенос :
х⁴ = 81
81 = 3^4
х⁴ = 3^4
x = -3 или 3
б) х⁴ + 169 = 0
Перенос :
х⁴ = -169 => Уравнение не имеет значений, так как степень числа не может быть отрицательным числом.
в) 25х⁴ - 49 = 0
Перенос :
25х⁴ = 49
49 = 7^2
25х⁴ = (5x^2)^2
25х⁴ = 7^2
5x^2 = 7
x^2 = 1,4
г) 6х⁴ - 144 = 0
144 = 12^2
16 = 4^2
(4x^2)^2 = 12^2
4x^2 = 12
x^2 = 3
Если моё решение оказалось верным, я бы хотел Вас попросить отметить мой ответ как лучший, а так же оставить отзыв о качестве моей работы (каким бы он ни был). Рад был оказать Вам
8(3+x)=237+7(x-5)
24 + 8X = 237 + 7X - 35
X = 178
ответ: X = 178