A+3/1-a*(a/a-3+3-a/a+3), a/a и (-a/a) взаимно уничтожаются остаётся a+3/1-a*(-3+3+3). (-3) и (3) взаимно уничтожаются остаётся a+3-a*3, a и (-a) взаимно уничтожаются остаётся 3*3=9 ответ:9
Попробую решить) Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно. Значит, при х = -4,5 верно следующее неравенство: x^2+9x+a<0 ( поменяли знак неравенства на противоположный). Подставим "-4,5" вместо икса и получим: (-4,5)^2+9*(-4,5)+a<0 20,25-40,5+a<0 -20,25+a<0 a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный). Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы. ответ: a> 20,25.
Постарайся ответить не выполняя построение на координатной плоскости!
1. Один конец отрезка находится в начальной точке координатной системы O(0;0). Другой конец A имеет координаты (8;0). Определи координаты серединной точки C отрезка OA. C(4;0);
2. Один конец отрезка находится в начальной точке координатной системы O(0;0). Другой конец B имеет координаты (0;34). Определи координаты серединной точки D отрезка OB. D(0;17);
3. Один конец отрезка находится в точке M с координатами (8;34), другой конец N имеет координаты (6;40). Определи координаты серединной точки K отрезка MN. K(7;35.5).
остаётся a+3/1-a*(-3+3+3). (-3) и (3) взаимно уничтожаются
остаётся a+3-a*3, a и (-a) взаимно уничтожаются
остаётся 3*3=9
ответ:9