1)
30% числа k = 0,3a
35% числа p = 0,35p
0,3k > 0,35p на 20
Первое уравнение:
0,3k - 0,35p = 20
2)
20% числа k = 0,2а
30% числа p = 0,3р
0,3р > 0,2k на 8
Второе уравнение:
0,2k + 8 = 0,3p
3)
Решаем систему.
{0,3k-0,35р = 20
{0,2k - 0,3р = - 8
Первое умножим на 2, а второе умножим на (-3)
{0,6k-0,7р = 40
{-0,6k+0,9р = 24
Сложим
0,6k-0,7р -0,6k+0,9р = 40+24
0,2р = 64
р = 64 : 0,2
р = 320
В первое уравнение 0,3k - 0,35p = 20 подставим р = 320.
0,3k - 0,35·320 = 20
0,3k - 112 = 20
0,3k = 112 + 20
0,3k = 132
k = 132 : 0,3
k = 440
ответ: k = 440;
р = 320.
Стороны нашли.
Теперь нам известно, что площадь квадрата больше площади прямоугольника на 15 (S1-площадь прямокгольника; S2площадь квадрата)
S2>S1
S2+15=S1 (так как на 15 больше)
У вадимка все стороны равны следовательно S2=x^2 (площадь равна икс в квадрате)
Найдем площадь прямокгольника. В начале мы нашли его стороны...следовательно S1=(X-3)(X-2)
Теперь вернемся к нашему следствию S2+15=S1 (так как на 15 больше) И подставим площади.
Получаем:
Х^2+15=(х-3)(х-2)
Х^2+15=х^2-5х+6
15х=6-5х
20х=6
Х=3/10
Х=0,3