x1 = -re(acos(-3)) + 2*pi - i*im(acos(-3))
x2 = 2*pi - i*im(acos(4))
x3 = re(acos(-3)) + i*im(acos(-3))
x4 = re(acos(4)) + i*im(acos(4))
Объяснение:
x1 = -re(acos(-3)) + 2*pi - i*im(acos(-3))
x2 = 2*pi - i*im(acos(4))
x3 = re(acos(-3)) + i*im(acos(-3))
x4 = re(acos(4)) + i*im(acos(4))
x1 = 3.14159265358979 + 1.76274717403909*i
x2 = 6.28318530717959 - 2.06343706889556*i
x3 = 3.14159265358979 - 1.76274717403909*i
x4 = 2.06343706889556*i
сумма
-re(acos(-3)) + 2*pi - i*im(acos(-3)) + 2*pi - i*im(acos(4)) + i*im(acos(-3)) + re(acos(-3)) + i*im(acos(4)) + re(acos(4))
=
4*pi + re(acos(4))
произведение
(((-re(acos(-3)) + 2*pi - i*im(acos(-3)))*(2*pi - i*im(acos(4*(i*im(acos(-3)) + re(acos(-3*(i*im(acos(4)) + re(acos(4)))
=
-(2*pi - i*im(acos(4)))*(i*im(acos(-3)) + re(acos(-3)))*(i*im(acos(4)) + re(acos(4)))*(-2*pi + i*im(acos(-3)) + re(acos(-3)))
Чтобы определить проходит ли график функции через данные точки, нужно координаты этих точек подставить в уравнение функции и проверить, выполняется ли равенство.
у=3х²-х-2
А (-1; 2)
2=3*(-1)²-(-1)-2
2=3+1-2
2=2
Равенство верно, следовательно график функции проходит через точку А.
В (2; 8)
8=3*2²-2-2
8=12-4
8=8
Равенство верно, следовательно график функции проходит через точку В.
С (0;3)
3=3*0²-0-2
3=-2
Равенство неверно, следовательно график функции не проходит через точку С.
D (1; 4)
4=3*1²-1-2
4=3-3
4=0
Равенство неверно, следовательно график функции не проходит через точку D.
ответ: график функции у=3х²-х-2 проходит через точку А (-1; 2) и В (2; 8).