По условию, выражение -5с-с² принимает отрицательные значения, т.е. значения меньше нуля. Таким образом, задача сводится к решению неравенства -5с-с²<0 Решение: -5c-c²<0 (умножаем обе части неравенства на (-1), при этом знак меняется) c²+5c>0 (разложим на множители левую часть неравенства) c(c+5)>0 (далее решаем методом интервалов) + - + (-5)(0)
Т.к. знак неравенства > (больше нуля), то выбираем области, где стоит знак плюс, получаем ответ: с∈(-∞;-5)U(0;+∞)
Интересная логическая задача. Известно: 1,4,5 - кедр, 2,3 - сандал. На шкатулках из кедра и сандала одинаковое количество ложных утверждений: 1 или 2. Надписи: На 1: 1 или 4. На 2: 1. На 3: 3 или 5. На 4: НЕ в 1, НЕ во 2 и НЕ в 3. На 5: На всех остальных ложь. На 5 написано, что на остальных ложь, поэтому на всех правды быть не может. 1) По 1 ложному утверждению. Тогда ложь на 5 шкатулке из кедра. На 1 и 4 правда. Если ложь на 2 шкатулке из сандала, то на 3 правда, но 1 и 3 противоречат друг другу. Если ложь на 3 шкатулке, то на 2 правда, но тогда 2 и 4 противоречат друг другу. Таким образом, по 1 ложному высказыванию быть не может. 2) По 2 ложных утверждения. Очевидно, что это 1,2,3,4 шкатулки, а на 5 правда. В этом случае есть единственное решение: клад во 2 шкатулке. 1) Не в 1 и не в 4. 2) Не в 1. 3) Не в 3 и не в 5. 4) В одной из шкатулок левее 4 клад есть ответ: клад во 2 шкатулке.