
Объяснение:

Выражаем из верхнего уравнения переменную "у":

Подставляем полученное выражение в нижнее уравнение вместо "у":

Раскрываем квадрат разности двух выражений, пользуясь следующей формулой:



Приведём подобные слагаемые. Для этого вынесем общий множитель за скобки:

Выполним сложение в скобке и перенесём слагаемое 13 со знаком минус в левую часть уравнения:

Выполним вычитание:

Разделив все части нижнего уравнения на 6, получим:

Теперь разделим все части нижнего уравнения на 2 для того, чтобы получить приведённое квадратное уравнение:

Решаем нижнее уравнение по теореме Виета. Согласно ей, сумма корней приведённого квадратного уравнения равна коэффициенту при "х", взятому с противоположным знаком, а их произведение — свободному члену:

Минус перед скобкой и минус после скобки дают плюс:

Корнями этой системы являются числа 1/2 и 2.
Мы нашли два значения переменной "х". Теперь подставим каждое из них в верхнее уравнение:


Мы получили две пары корней:

Они являются решениями системы.
(x-0.9)(x-4)(x-2)=3(x-0.9)(x-4)(x-4)
x=0.9
x=4
делим на x-4 и x-0.9
x-2=3(x-4)
x-2=3x-12
2x=10
x=5
5*4*0.9=18