Нельзя допустить деление на нуль, следовательно x≠0. Отсюда область определения:
График получается с растягивания графика (обратная пропорциональность) вдоль оси у в 6 раз. Это означает, что у данной функции, многие свойства такие же как и у обратной пропорциональности. Мы знаем что график обратной пропорциональности называется гиперболой. Следовательно, график тоже является гиперболой.
Область значений:
Так как функция принимает отрицательные значения на луче то и принимает отрицательные значения на луче
Не формально: Провожу эксперимент с подбрасыванием монеты 5 раз, результаты записываю в ряд: если на 3 раз получил орла - на месте 3 пишу цифру 1 (_,_,1_,_), если на 5 раз получил решку - пишу на месте 5 цифру 0 (_,_,_,_,0). Таким образом ВСЕ возможные результаты 5 бросков можно записать векторами 5 состоящими из нолей и единиц. Общее количество таких векторов равно (комбинаторное объяснение - в КАЖДОЕ из ПЯТИ мест ты можешь вписать НОЛЬ, или ОДИН не зависимо от остальных мест). Теперь считаем количество экспериментов, которые нам подходят - это все векторы ровно с тремя единичками. Результат делим на общее количество.
Формально (теория вероятностей): Определяем пространство возможных исходов: - отсюда мощность пространства Определяю "удачные исходы" - как множество векторов, содержащих ровно три единицы из пяти: . Мощность А равна количеству расставить три единицы на пяти местах (бином (5 3)=10). Определяем функцию по классическому определению вероятности. Шанс получить удачный исход равен .
График
Мы знаем что график обратной пропорциональности называется гиперболой. Следовательно, график
Область значений:
Так как функция
Функция нечётна, так как:
Таблица первых значений и сам график во вложении.