Объяснение:7x2 + 10x + 5 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 102 - 4·7·5 = 100 - 140 = -40
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 23x + 15 = 0
D = b2 - 4ac = (-23)2 - 4·4·15 = 529 - 240 = 289
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 23 - √289/ 2·4 = 23 - 17 /8 = 6/ 8 = 0.75
x2 = 23 + √289 /2·4 = 23 + 17/ 8 = 40 /8 = 5
25x2 - 40x + 16 = 0
D = b2 - 4ac = (-40)2 - 4·25·16 = 1600 - 1600 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительный корень:
x = 40/ 2·25 = 0.8
1)f=8/sqrt(x)
f'=-8*1/2x^(-3/2)=-4x^(-3/2)
f(4)=8/2=4
f'(4)=-4*4^(-3/2)=-4/8=-1/2
4=-1/2*4+b 4=-2+b b=6
y=-1/2x+6
2)f'(x)=e^x f'(x0)=e^0=1
f(0)=e^0=1
y=x