Нагляднее такие задачи решать через табличку. Она прикреплена. 1 этап: Пусть х человек - сидело в 3 автобусе, тогда во 2 автобусе сидело (х-4) человека, а в 1 автобусе: (х+5) человек. Всего в трех автобусах было 67 человек. 2 этап: Составим уравнение (х+5) + (х-4) + х = 67 3 этап (решение уравнения) 3х + 1 = 67, 3х = 66, х=66/3 = 22 - в 3 автобусе, тогда в 1 автобусе было (22+5) = 27 человек, во 2 автобусе: (22-4) = 18 человек. проверка: 22+27+18=67 - верно. ответ: 1 авт = 27 чел, 2 авт = 18 чел, 3 авт = 22 чел.
1) Обозначим скорости велов v1 и v2, время до встречи t (оно одинаковое у обоих), а расстояния, которые они проехали до встречи S1 и S2. До встречи 1-ый проехал такое расстояние, которое 2-ой проехал за 1,5=3/2 ч. S1=v1*t=v2*3/2 v1/v2=3/(2t) А 2-ой проехал такое, которое 1-ый проехал за 40 мин = 2/3 ч. S2=v2*t=v1*2/3 v1/v2=t:(2/3)=t*3_2=3t/2 Получаем v1/v2=3/(2t)=3t/2 Отсюда, разделив на 3/2: 1/t=t=1 ч. До встречи они оба ехали 1 ч. Отношение скоростей v1/v2=3/2. ответ А) в 1,5 раза. 2) x^2 - 2√(x^2+2x) = 3 - 2x x^2+2x + 2√(x^2+2x) - 3 = 0 Замена y=√(x^2+2x)>0 при любом х, потому что √ арифметический. y^2-2y-3=0 (y-3)(y+1)=0 Подходит только y=3 √(x^2+2x)=3 x^2+2x=9 x^2+2x-9=0 D=4-4*1*(-9)=40=(2√10)^2 x1=(-2-2√10)/2=-1-√10 x2=-1+√10 ответ: Б) -1+-√10