Объяснение:
А1. Б. Усечённой.
А2. V = Sосн * H. Радиус основания бывает не у призмы, а у цилиндра.
А3. Г. Параллелепипед.
А4. В. 3*12 = 36 см.
А5. А. S = 16 кв.см, а = √16 = 4 см, V = a^3 = 4^3 = 64 куб.см.
А6. Б. Нет. Или все боковые перпендикулярны к основанию, или ни одного.
А7. В. Шара.
А8. Нет, не изменится.
А9. Из двух конусов и цилиндра.
А10. Vкон = 1/3*Vцил = 1/3*12 = 4 куб.см.
А11. H = 3 см; R = D/2 = 6/2 = 3 см.
V = π*R^2*H = π*3^2*3 = 27π
А12. Hцил = Hпар = 6 см.
В основании пар-педа лежит квадрат со стороной а = 2R = 2*6 = 12 см.
V = a^2*H = 12^2*6 = 144*6 = 864 куб.см.
Пусть рабочие по плану делали в день а деталей, и могли выполнить план за д дней. Но изготавливая по (а + 4) детали в день сократили время до (д - 1) дней.
Составим равенства:
а * д = 369 (дет); (1)
(а + 4) * (д - 1) = 369: а * д + 4 * д - 1 * а - 4 = 369; заменим из (1) а * д = 369 во втором равенстве:
360 + 4 * д - а - 4 = 369; 4 * д - а = 4; а = 4 * д - 4;
Вставим в (1) полученное равенство а = 4 * д - 4;
(4 * д - 4) * д = 369; (д - 1) * д = 369/4 = 90;
д^2 - д - 90 = 0. д1,2 = 1/2 +- √1/4 + 90 = 1/2 +- √361/4 = (1 +19)/2 = 10 дней. д - 1 = 9 дней
а = 4 * 10 - 4 = 36 (дет). 36 + 4 = 40 дет.
Объяснение:
Вертикальная ассимптота функции х=0.
Чтобы найти экстремумы найдём первую производную и приравняем её нулю.
у'=1-1/х²=0 => 1=1/х² => х²=1
х1=1; х2 =-1
Рассмотрим интервалы (-бесконечность ;-1); (-1; 0); (0; 1); (1; +бесконечность)
При х=-2 у'(-2)=1-1/4=3/4>0, значит функция в этом интервале возрастает.
у'(-1/2)=1-4=-3<0 - функция убывает.
у'(1/2)=1-4=-3<0 - функция убывает.
у'(2)=1-1/4=3/4>0 - функция возрастает.
Таким образом, точка (-1; -2) - локальный максимум функции, а точка (1; 2) - локальный минимум.