Задание. Какие из чисел √18,√26,√30 заключены между числами 5 и 6. Решение: Проверим, заключен ли между числами 5 и 6 число √18, т.е., оценивая в виде двойного неравенства, получим Возведем все части неравенства в квадрат, будем иметь Отсюда следует, что число √18 не заключен между числами 5 и 6, т.к. неравенство 25<18 не верное.
Проверим теперь для √26, т.е. . Возведя все части неравенства в квадрат, получим . Неравенства выполняются, следовательно, число √26 заключен между числа 5 и 6.
Проверим теперь для √30, то есть, . Возведя все части неравенства в квадрат, получим: . Видим, что неравенства правильны, следовательно, число √30 заключен между числа 5 и 6.
2, (1) = (21-2) / 9 = 19/9 , { щоб звернути періодичну дріб в звичайну, треба з числа , що стоїть до другого періоду (21) , відняти число, що стоїть до першого періоду (2), і записати цю різницю чисельником ; в знаменнику написати цифру 9 стільки разів, скільки цифр у періоді (1 цифра) , і після дев'яток дописати стільки нулів , скільки цифр між комою і першим періодом ( 0 цифр) } або нехай 2 , (1) = х , тоді : 100х = 211, (1) 10х = 21 , (1) 90х = 190, { віднімаємо від першого друге } х = 19/9