На доске записаны числа 1,.за ход нужно стерет 3 некоторых числа а,в,с написанных на доске изаписать вместо него число а^{3} + в^{3}+ с^{3}.докажите ,что последнее оставшееся число не может быть равно 2013 ^{3
На каком-то этапе надо заменить тройку чисел (13, x, y) суммой133 + x3 + y3 = 2197 + x3 + y3 = p Отсюда ясно, что p > 2197 (*).После этого придется менять тройку чисел (p, m, n) суммойp3 + m3 + n3. Но если (см. *) p > 2197, то p3 > 21973 > 20133.Если это произошло не на последнем этапе, то равенство уже не выполняется.Тем более, последнее оставшееся число больше, чем 20133, значит, равным ему быть не может.
Первое лежит в третьей четверти т.к.π≈3,14 (заканчивается вторая четверть, второе тоже в третьей четверти -46≈-7π-2 если окружность разбить на четыре четверти, то первая от 0 до π/2, вторая от π/2 до π, третья от π до 3/2π и четвертая от 3/2π до 2π. π≈3,14 значит число 3,2 перешло число π т.е. попало в третью четверть. 2π называют полным оборотом число -46 большое и сначала отбросим полные обороты их 7, но двигаемся по часовой стрелке поэтому -7, (-7*6,28)≈-43,96 до -46 остается ≈ -2 т.е. опять меньше чем -π это третья четверть