y` > 0 при любом х≠1 так как ( х - 1)²>0 и х² - 2х + 3 >0 любом х ∈(-∞; +∞) так как дискриминант квадратного трехчлена D= (-2)²-4·3 <0, ветви параболы направлены вверх а=1 > 0 и парабола ось ох не пересекает, расположена выше оси ох
Если производная неотрицательна на интервале , то функция возрастает на этом интервале
Приводим дроби к общему знаменателю. Общий знаменатель 2x·(х-3)·(х-3)·(х+3) Первую дробь умножаем на 2x·(х-3), вторую дробь на 2x·(х+3), третью дробь на (х-3)² Получим: Дробь равна нулю тогда и только тогда, когда числитель равен 0, а знаменатель отличен от 0. Приравниваем к нулю числитель 6x² - 18x - 2x² -6x-3x²+18x-27=0, x² - 6x - 27 = 0 D=(-6)² - 4·(-27)=36+108 =144 = 12² x₁=(6-12)/2=-3 или х₂=(6+12)/2=9 Так как знаменатель не должен быть равным нулю, то это означает, что х≠0, х≠3, х≠ -3 Поэтому х₁ = - 3 не является корнем уравнения ответ. х=9