Умножая первое уравнение на 2, находим 2*xy=10. Прибавляя это выражение ко второму уравнению, получаем x²+2*x*y+y²=(x+y)²=25. Отсюда x+y=5 либо x+y=-5, и мы получаем две системы:
x*y=5
x+y=5
и
x*y=5
x+y=-5.
Решим первую систему. Из второго уравнения находим y=5-x. Подставляя это выражение в первое уравнение, получаем: x*(5-x)=5, или x²-5*x+5=0. Оно имеет корни x1= и x2=(5-√5)/2. Отсюда y1=5-x1=(5-√5)/2 и y2=5-x2=(5+√5)/2.
Решим вторую систему. Из второго уравнения находим y=-5-x. Подставляя это выражение в первое уравнение, получаем: x*(5+x)=-5, или x²+5*x+5=0. Оно имеет корни x3=(-5+√5)/2 и x4=(-5-√5)/2. Отсюда y3=-5-x3=(-5-√5)/2 и y4=-5-x4=(-5+√5)/2.
ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.
. Генеалогический метод, близнецовый метод, цитогенетический метод, биохимический метод, популяционно-статистический метод. 2. Использование генеологического метода возможно только тогда когда известны прямые родственики. А использование близневого метода возможно при наблюдении. А в цитогенетическом методе могут происходить мутации клеток. В биохимическом методе используется обнаружение нарушений в обмене веществ, изменения генов. В популяционно-статическом используется метод распространения наследственных признаков
ответ: x1=(5+√5)/2, y1=(5-√5)/2; x2=(5-√5)/2, y2=(5+√5)/2; x3=(-5+√5)/2, y3=(-5-√5)/2; x4=(-5-√5)/2, y4=-5-x4=(-5+√5)/2.
Объяснение:
Умножая первое уравнение на 2, находим 2*xy=10. Прибавляя это выражение ко второму уравнению, получаем x²+2*x*y+y²=(x+y)²=25. Отсюда x+y=5 либо x+y=-5, и мы получаем две системы:
x*y=5
x+y=5
и
x*y=5
x+y=-5.
Решим первую систему. Из второго уравнения находим y=5-x. Подставляя это выражение в первое уравнение, получаем: x*(5-x)=5, или x²-5*x+5=0. Оно имеет корни x1= и x2=(5-√5)/2. Отсюда y1=5-x1=(5-√5)/2 и y2=5-x2=(5+√5)/2.
Решим вторую систему. Из второго уравнения находим y=-5-x. Подставляя это выражение в первое уравнение, получаем: x*(5+x)=-5, или x²+5*x+5=0. Оно имеет корни x3=(-5+√5)/2 и x4=(-5-√5)/2. Отсюда y3=-5-x3=(-5-√5)/2 и y4=-5-x4=(-5+√5)/2.