1) дискриминант =(-38)*(-38)-4*81*4=1444-1296=148, это больше 0,значит корня -два. 2)5x^2+22x+8=0 D=484-4*5*8=324 x1=(-22-18)/10= -40/10=-4 x2=(-22+18)/10= 0.4 3)(5x+2)^2=(5x-3)(4x+1) 25x^2+20x+4=20x^2+5x-12x-3 5x^2+27x+7=0 D=729-4*5*7=589 корень из дискриминанта не целое число, может быть в задании ошибка? x1=(-27+V589)/10 x2=(-27-V589)/10
4)х- одна сторона 4/3*х-другая сторона x^2+(4/3x)^2=25^2 x^2+16/9x^2=625 25/9*x^2=625 x^2=625*9/25=225 x=15 4/3x=15*4/3=20 P=2(20+15)=70 5)x^2-5x+4=0 D=25-16=9 два корня x1=(5-3)/2=1 x2=(5+3)/2=4 1+4=5 6)3x^2-ax+36=0 по т. Виета x1+x2= a x1*x2= 36 x1=-3 -3+x2=a (-3)*x2=36 x2= -12 второй корень -3-12=-15
Среднеарифметическое двух чисел всегда меньше большого числа на столько же, насколько оно больше меньшего числа. Ну например для чисел и – среднеарифметическое равно и при этом на меньше двадцати пяти и на больше семнадцати.
Когда Вася отдаёт Пете монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на монет меньше изначального, а у Пети на монет больше изначального. А значит, вначале у Васи было на монет больше, чем у Пети.
Путь у Васи вначале монет. Тогда у Пети монет.
В первом случае всё как раз получается правильно:
Во втором случае у Васи-II оказывается монет, а у Пети-II будет монет. При этом у Пети-II монет в раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:
Далее это целочисленное уравнение можно решить двумя
[[[ 1-ый
Чтобы было целым, целой должен быть и результат деления в дроби, а чтобы было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда откуда:
[[[ 2-ой
Чтобы было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет откуда:
Период T = 4
По графику видно что f(0) = 1 , тогда :
f(24) = f(0 + 6T ) = f(0) = 1
По графику видно что f(1) = 4 , тогда :
f(25) = f(1 + 6T) = f(1) = 4
По графику видно что f(2) = 4 , тогда :
f(26) = f(2 + 6T) = f(2) = 4
По графику видно что f(-1) = -2 , тогда :
f(27) = f(- 1 + 7T) = f(- 1) = - 2
f(24) + f(25) + f(26) + f(27) = 1 + 4 + 4 - 2 = 7