Для решения неравенства методом интервалов будем выполнять следующие шаги
1) найдем корни уравнения уравнения
(x+3)(x-4)(x-6)=0
произведение равно нуля когда любой из множителей равен нулю
х+3=0 или х-4=0 или х-6=0
тогда х= -3 или х= 4 или х=6
2) Нарисуем числовую ось и отметив полученные точки
-3 4 6
3) в каждом из полученных промежутков определим знак нашего выражения
при х< -3 проверим для точки х= -5
(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0
при -3<x<4 проверим для точки х=0
(0+3)(0-4)(0-6)=(+)(-)(-)>0
при 4<x<6 проверим для точки х=5
(5+3)(5-4)(5-6)=(+)(+)(-)<0
при x>6 проверим для точки х=10
(10+3)(10-4)(10-6)= (+)(+)(+)>0
4) расставим полученные знаки над промежутками
--3+4-6__+
5) и теперь осталось выбрать промежутки где стоит знак "минус"
( по условию <0)
Запишем полученные промежутки (-∞; -3) ∪(4;6)
Дано:
у(х) = - 3х+1
Найти: y(-2); у (2/3); y(0); y(-0,1).
Решение:
1) х = - 2
у(-2) = -3 · (-2) + 1 = 6 + 1 = 7
у(-2) = 7;
2) х = ²/₃
у(²/₃) = -3 · ²/₃ + 1 = -2 + 1 = - 1
у( ²/₃) = - 1;
3) х = 0
у(0) = -3 · 0 + 1 = 0 + 1 = 1
у(0) = 1;
4) х = - 0,1
у(-0,1) = -3 · (-0,1) + 1 = 0,3 + 1 = 1,3
у(- 0,1) = 1,3.
2.
Дано:
у(х) = - 3х+1
у₁=0;
у₂= - 2;
у₃=1/2;
у₄=-1,1.
Найти: х₁; х₂; х₃; х₄
Решение:
1) у₁=0
0 = - 3х + 1
3х = 1 - 0
3х = 1
х₁ = ¹/₃
2) у₂ = - 2
- 2 = - 3х + 1
3х = 1 + 2
3х = 3
х = 3 : 3
х₂ = 1
3) у₃ = ¹/₂
¹/₂ = - 3х + 1
3х = 1 - ¹/₂
3х = ¹/₂
х = ¹/₂ : 3
х₃ = ¹/₆
4) у₄ = - 1,1
- 1,1 = - 3х + 1
3х = 1 + 1,1
3х = 2,1
х = 2,1 : 3
х₄ = 0,7