Периметр прямоугольника равен : (а + в) * 2 , где а и в - стороны прямоугольника . Площадь прямоугольника равна : S = а * в . Из условия задачи имеем (а + в) * 2 = 26 см ; а + в = 13 ; а = (13 - в) S = (13 - в) * в = 36 ; 13в - в^2 = 36 ; в^2 - 13в + 36 = 0 D = (- 13)^ - 4 * 1 *36 = 169 - 144 = 25 ; Sqrt(25) = 5 Найдем корни уравнения . в' = (-(- 13) + 5) / 2*1 = (13 + 5) / 2 = 9 ; в" = (- (- 13) - 5) / 2 * 1 = (13 - 5) / 2 = 4 . Получили 2 действительных корня : 9 см и 4 см . Другая сторона прямоугольника будет соответственно равна : 4 см и 9см
Решение: Обозначим первоначальную скорость автобуса за V км/час (учитывая, что с этой скоростью автобус бы проехал всё расстояние, т.е. 260км), тогда запланированное время в пути составило бы: t=260/V (1) Первые 2 часа автобус проехал расстояние 2*V=2V (км) Следующее время в пути составило: t-2-0,5=t-2,5 (час) со скоростью: (V+5)км/час и проехал расстояние: (t-2,5)*(V+5) (км) И так как расстояние между городами составило 260км, то: 2V+(t-2,5)*(V+5)=260 (1) Подставим во второе уравнение первое выражение t=260/V 2V+(260/V-2,5)*(V+5)=260 2V+(260/V-V*2,5/V)*(V+5)=260 2V^2+260V-2,5V^2+1300-12,5V=260V -0,5V^2-12,5V+1300=0 умножим каждый член уравнения на (-2), получим: V^2+25V-2600=0 V1,2=(-25+-D)/2*1 D=√(625-4*1*-2600)=√(625+10400)=√11025=105 V1,2=(-25+-105)/2 V1=(-25+105)/2 V1=80/2 V1=40 ((км/час) - первоначальная скорость автобуса V2=(-25-105)/2 V2=-130/2 V2=-65 - не соответствует условию задачи
9
Объяснение:
разность арифметической прогрессии равна 4, поэтому к каждому числу прибавляем 4 и получаем следующий член