Пусть в силу условия (1) (2) где х, y - некоторые натуральные числа
Предположим что тогда из второго соотношения (2) следует что где k - некоторое натуральное число
откуда а значит число |16a-9b| сложное если и
Рассмотрим варианты 1) что невозможно - два последовательных натуральных числа не могут быть квадратами натуральных чисел (доказательство єтого факта =>x=1; y=0 ) 2) => k - ненатуральное -- невозможно 3) => k - ненатуральное - невозможно тем самым окончательно доказали,что исходное утверждение верно.
Случай когда Учитывая симметричность выражений a+b=b+a, ab=ba доказывается аналогично. Доказано
Решение: Сперва определим ОДЗ неравенства. Очевидно, что значение x не должно совпадать со значением 2. Поскольку, знаменатель - это неотрицательное число, то числитель тоже не должен быть отрицательным. Решается методом интервалов. В силу того, что сама дробь должна быть больше 0, то числитель тоже должен быть больше 0 (про знаменатель уже сказали). Как решать неравенство методом интервалов? На вашем примере, думаю, будет все ясно. Находим нули функций (иными словами, находим те значения x, так, чтобы функция была равна 0 и соблюдалось ОДЗ). Это: x=-2;3;4. Отмечаем значения на числовом луче. Определяем знакопостоянство: если x<-2, то числитель отрицателен (отмечаем на луче). При всех остальных значениях числитель - положительный (за исключением x=2, потому что при этом значении знаменатель обращается в нуль, а мы знаем,что на 0 делить нельзя). Получили интервал: отрицательный: И положительный: (рис. 2) Далее, снова отрицательный: И положительный: Но, в условии сказано: найти кол-во целых отрицательных чисел, удовлетворяющих неравенству. Опять же, обращаясь к нашему промежутку чисел, находим, что их только 2: -2 и -1. Однако, -2 обращает дробь в 0, поэтому, число только одно. ответ: -1
4х^2-8х-х^2+8х-16=3х^2-16