М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
tanchik2511
tanchik2511
17.11.2020 19:17 •  Алгебра

Өрнек ыкшамда 4 х (х-2)-(х-4)² ​

👇
Ответ:
sirdemenev
sirdemenev
17.11.2020

4х^2-8х-х^2+8х-16=3х^2-16

4,5(27 оценок)
Открыть все ответы
Ответ:
Human333
Human333
17.11.2020
Пусть в силу условия
a+b=x^2 (1)
ab=y^2 (2)
где х, y - некоторые натуральные числа

Предположим что b \geq a
тогда из второго соотношения (2) следует что
b=ak^2
где k - некоторое натуральное число

откуда
|16a-9b|=|16a-9ak^2|=|a(16-9k^2)|=\\\\|a||16-9k^2|=a|16-9k^2|
а значит число |16a-9b| сложное если
|16-9k^2| \neq 1
и a \neq 1

Рассмотрим варианты
1) a=1
b+1=x^2
b=y^2
что невозможно - два последовательных натуральных числа не могут быть квадратами натуральных чисел
(доказательство єтого факта
(b+1)-b=x^2-y^2
1=(x-y)(x+y)
1=x-y
1=x+y
=>x=1; y=0
)
2) 16-9k^2=1
15=9k^2
5=3k^2
=> k - ненатуральное -- невозможно
3) 16-9k^2=-1
17=9k^2
=> k - ненатуральное - невозможно
тем самым окончательно доказали,что исходное утверждение верно.

Случай когда a 
Учитывая симметричность выражений a+b=b+a, ab=ba
доказывается аналогично.
Доказано
4,6(62 оценок)
Ответ:
lizabjnyjyve
lizabjnyjyve
17.11.2020
Решение:
Сперва определим ОДЗ неравенства. Очевидно, что значение x не должно совпадать со значением 2.
Поскольку, знаменатель - это неотрицательное число, то числитель тоже не должен быть отрицательным.
Решается методом интервалов. В силу того, что сама дробь должна быть больше 0, то числитель тоже должен быть больше 0 (про знаменатель уже сказали). Как решать неравенство методом интервалов? На вашем примере, думаю, будет все ясно.
Находим нули функций (иными словами, находим те значения x, так, чтобы функция была равна 0 и соблюдалось ОДЗ). Это: x=-2;3;4. Отмечаем значения на числовом луче. Определяем знакопостоянство: если x<-2, то числитель отрицателен (отмечаем на луче). При всех остальных значениях числитель - положительный (за исключением x=2, потому что при этом значении знаменатель обращается в нуль, а мы знаем,что на 0 делить нельзя). Получили интервал: отрицательный: (-\infty;-2)
И положительный: (-2;3) (рис. 2)
Далее, снова отрицательный: (3;4)
И положительный: (4; \infty)
Но, в условии сказано: найти кол-во целых отрицательных чисел, удовлетворяющих неравенству. Опять же, обращаясь к нашему промежутку чисел, находим, что их только 2: -2 и -1. Однако, -2 обращает дробь в 0, поэтому, число только одно.
ответ: -1

Найдите количество целых отрицательных решений неравенства объясните
4,8(28 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ