Пусть N- 600 член последовательности. m^2-последний квадрат до N. k^3-последний куб до N,а f^6-последнее число до N являющее квадратом и кубом одновременно. Тогда верно соотношение: N-(m+k-f)=600. Условимся ограничить поиск N в области трехзначных чисел. (Ясно что такое N единственно) Ясно,что k<10 (10^3=1000) f<4 (4^6= 4096. Значит :k-f<=8. Тк 32^2>100,то наибольшее значение : m+k-f=39 для треxзначного N. Тогда область поиска N ограничено интервалом: 600 -639. Для любого N лежащего в этом интервале: m^2=25^2или m=24^2 ; k^3=8^3=512; f^6=2^6=64. Тогда можно сразу же найти N:(2 варианта) 1)N=600+(24+8-2)=630>25^2 значит m=25(противоречие) 2)N=600+(25+8-2)=631 (верно) ответ :631
Возможно, эта ф-ция задана формулой у= -2х+5? Тогда,чтобы ответить на этот вопрос, надо подставить координаты а) точки А в формулу у= -2*1 +5=3. у=3 совпадает со значением координаты "у" заданной точки А, значит эта точка принадлежит графику ф-ции. б) точки Б в формулу у= -2*(-1) +5=7. у=7 не совпадает со значением координаты "у" заданной точки В, значит точка В не принадлежит графику ф-ции. Если всё-таки это формула у= -2+5, то у=3. Тогда точка А, имеющая координату у=3, дежит на прямой, а точка В с координатой у=6 нет.
N-(m+k-f)=600.
Условимся ограничить поиск N в области трехзначных чисел. (Ясно что такое N единственно)
Ясно,что k<10 (10^3=1000) f<4 (4^6=
4096. Значит :k-f<=8. Тк 32^2>100,то наибольшее значение : m+k-f=39 для треxзначного N. Тогда область поиска N ограничено интервалом: 600 -639. Для любого N лежащего в этом интервале: m^2=25^2или m=24^2 ; k^3=8^3=512; f^6=2^6=64. Тогда можно сразу же найти N:(2 варианта) 1)N=600+(24+8-2)=630>25^2 значит m=25(противоречие) 2)N=600+(25+8-2)=631 (верно) ответ :631