1. Б
2. Г
3. В
4. 1) у(2) = 8 * 2 - 3 =13
2) -19 = 8x - 3
-19 + 3 = 8x
8x = -16
x = -2
3) -13 = 8 * (-2) - 3
-13 = -16 - 3
-13 ≠ -19
Графік не проходить через точку А
5. х>0 при х=(1 1/3; + ∞)
6. 6х² - 3х ≠ 0
3х(2х - 1) ≠ 0
х ≠ 0; 2х ≠ 1
х ≠ 0; х ≠1/2
D(y) = ( -∞; 0)∪(0; 1/2)∪(1/2; +∞)
7. y = 47x - 9 та y = -13x + 231
47x - 9 = -13x + 231
47x + 13x = 231 + 9
60x = 240
x = 4
y(4) = -13 * 4 +231 = 179
(4; 179)
8. Нехай невідома функція у = kx + b.
Якщо вона паралельна графіку у = -5х + 8 , то k = -5.
Тоді невідома функція у = -5х + b.
Оскільки графіку даної функції належить точка В(-2; 8), то
8 = -5 * (-2) + b
8 = 10 + b
b = 8 - 10
b = -2
Відповідь: у = -5х - 2
Объяснение:
Было число:
X = 1000a + 100b + 10c + d
У него поменяли первую и последнюю цифры, стало:
Y = 1000d + 100b + 10c + a
Потом эти два числа сложили, получилось:
X + Y = 1001a + 200b + 20c + 1001d
И оно делится на 91 = 7*13. Выделим числа, кратные 91, и найдем остаток.
Заметим, что 1001 = 7*11*13 = 91*11, поэтому 1001а и 1001d кратны 91.
X + Y = 91*11a + 91*11d + 91*2b + 18b + 20c
Остаток от деления на 91 равен 18b + 20c. И этот остаток тоже должен делиться на 91.
Так как b и с - однозначные цифры, то 18b + 20c ≤ 18*8+20*9 = 324.
К тому же, число 18b + 20c - четное, и может равняться только 91*2=182.
18b + 20c = 182
9b + 10c = 91.
b = 9; c = 1; 9b + 10c = 9*9 + 10*1 = 91
Это решение - единственное.
Значит, число имело вид:
X = 1000a + 910 + d
Нам надо доказать, что оно НЕ делится на 91.
Ясно, что 910 делится на 91.
Число X может делиться на 91, только если 1000a + d делится на 91.
А это возможно, только если это числа вида: 1001; 2002; ...; 9009.
Во всех случаях a = d, но это неправильно: по условию мы взяли число из 4 разных цифр.
Таким образом, мы доказали, что число
X = 1000a + 100b + 10c + d
Не может быть кратно 91, при заданных в задаче условиях.