Формулы приведения работают так: надо определить, какой будет знак (если угол a в первой четверти), поставить его, а потом поменять название на кофункцию, если прибавляется или вычитается нечетное число π/2 (или 90°), и оставить название, если целое число π (180°).
1) Если повернуть угол α на π/2, получится угол II четверти, в ней синус положителен. Прибавляли π/2, sin меняем на cos. sin(π/2 + α) = cos α
2) Прибавление 2π — поворот на полный круг, получаем угол -α из IV четверти. в ней косинус положителен. Поворот на целое число π, не меняем название функции. cos(π - α) = cos α
3) угол из IV четверти, ctg < 0, название не меняется ctg(360° - α) = -ctg α
4) III четверть, cos < 0, название меняется cos(3π/2 + α) = -sin α
5) Прибавлние полного оборота ничего не меняет. sin(2π + α) = sin α
Есть теорема, которая гласит, что если многочлен с целыми коэффициентами имеет рациональный корень x0=m/n (m/n - не сократимая дробь), то свободный член делится без остатка на m, а старший коэффициент многочлена делится без остатка на n. Поищем сначала целые корни. Из теоремы следует, что они должны быть делителем 1. То есть это либо 1 либо -1. Ни одно из этих значений не подходит. Ищем рациональные корни. Корни, очевидно, являются отрицательными числами, поэтому числитель дроби будет равен -1. Выпишем положительные делители 24, не считая 1: 2, 3, 4, 6, 8, 12, 24. Теперь проверим являются ли корнями дроби: -1/2, -1/3, -1/4, -1/6, -1/8, -1/12, -1/24. Проверяя первые три дроби получим, что они являются корнями. x=-1/2 x=-1/3 x=-1/4 Других корней нет, так как уравнение третьей степени с вещественными коэффициентами вообще не может иметь более 3 корней (вещественных или комплексных). Все.
Объяснение:
Все верно. Если решить написанное выражение получаем ответ
499,89998999 ≈ 500
Просто округление.