М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
August12345
August12345
27.03.2020 16:48 •  Алгебра

Алгебра, завдання з параметрами, 11клас


Алгебра, завдання з параметрами, 11клас

👇
Ответ:
getmanchenko02
getmanchenko02
27.03.2020

(см. объяснение)

Объяснение:

В своем ответе я приведу два допустимых решения.

1:

Рассмотрим уравнение x^2-3.75x+a=0.

Пусть y - один из его корней.

Тогда по условию y^2 - второй корень уравнения.

Итого имеем систему:

\begin{equation*} \begin{cases} y^2-3.75y+a=0\\y^4-3.75y^2+a=0 \end{cases}\end{equation*};

Решив ее, получим, что a=0,\;a=\dfrac{11}{4},\;a=\dfrac{27}{8},\;a=-\dfrac{125}{8}.

Проверим теперь каждое значение параметра и выберем те, при которых выполняется решение задачи.

(здесь надо решить 4 уравнения при всех найденных значениях параметра; я этого делать не буду, так как эти действия долгие, но очевидные)

Итого получили, что при a=\dfrac{27}{8} и a=-\dfrac{125}{8} один из корней уравнения x^2-3.75x+a=0 является квадратом другого.

2:

x^2-3.75x+a=0\\\\x^2-\dfrac{15}{4}x+a=0

Решим это уравнение через дискриминант:

D=\dfrac{225}{16}-4a\\\sqrt{D}=\sqrt{\dfrac{225}{16}-4a}

Выразим корни уравнения:

x_1=\dfrac{\dfrac{15}{4}+\sqrt{\dfrac{225}{16}-4a}}{2}\\\\x_2=\dfrac{\dfrac{15}{4}-\sqrt{\dfrac{225}{16}-4a}}{2}

По условию один из корней должен являться квадратом другого.

Тогда возможны два случая:

x_1=x_2^2      /или/      x_1^2=x_2

Но второй не будет иметь корней, так как x_1^2x_2.

Запишем единственное уравнение и найдем искомые значения параметра:

\dfrac{\dfrac{15}{4}+\sqrt{\dfrac{225}{16}-4a}}{2}=\left(\dfrac{\dfrac{15}{4}-\sqrt{\dfrac{225}{16}-4a}}{2}\right)^2\\\dfrac{15}{8}+\dfrac{\sqrt{\dfrac{225}{16}-4a}}{2}=\left(\dfrac{15}{8}-\dfrac{\sqrt{\dfrac{225}{16}-4a}}{2}\right)^2

Меняем \dfrac{\sqrt{\dfrac{225}{16}-4a}}{2} на t:

\dfrac{15}{8}+t=\left(\dfrac{15}{8}-t\right)^2

Откуда t=\dfrac{3}{8} или t=\dfrac{35}{8}.

Обратная замена:

\dfrac{\sqrt{\dfrac{225}{16}-4a}}{2}=\dfrac{3}{8}

a=\dfrac{27}{8}

Или:

\dfrac{\sqrt{\dfrac{225}{16}-4a}}{2}=\dfrac{35}{8}

a=-\dfrac{125}{8}

Итого имеем, что при a=\dfrac{27}{8} и a=-\dfrac{125}{8} один из корней уравнения x^2-3.75x+a=0 является квадратом другого.

Задание выполнено!

4,4(67 оценок)
Ответ:
AveMartells
AveMartells
27.03.2020

x^{2}-3,75x+a=0

По теореме Виета :

x_{1}\cdot x_{1} ^{2} =a\\\\x_{1}^{3} =a\\\\x_{1}=\sqrt[3]{a}\\\\x_{2}=\sqrt[3]{a^{2} }

Следовательно :

\sqrt[3]{a}+\sqrt[3]{a^{2}}=3,75\\\\\sqrt[3]{a}=m\\\\m^{2}+m-\dfrac{15}{4}=0\\\\4m^{2} +4m-15=0\\\\D=4^{2}-4\cdot4\cdot(-15)=16+240=256=16^{2} \\\\m_{1}=\dfrac{-4-16}{8} =-2,5\\\\m_{2}=\dfrac{-4+16}{8} =1,5

1)\sqrt[3]{a}=-2,5 \\\\a_{1} =(-2,5)^{3} =-15,625\\\\2)\sqrt[3]{a}=1,5\\\\a_{2}=1,5^{3}=3,375\\\\Otvet:\boxed{-15,625 \ ; \ 3,375}

4,5(85 оценок)
Открыть все ответы
Ответ:
Мимиf
Мимиf
27.03.2020
1) радиус в точку касания перпендикулярен к касательной))
2) дуга (отрезанная хордой) связана с центральным углом, опирающимся на эту дугу ---центральный угол определяет градусную меру дуги)))
3) если провести высоту в получившемся равнобедренном треугольнике,
то легко вычислить искомый угол... 90°-48°=42°,    90°-42°=48°
все это известно как Теорема: Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине градусной меры дуги, заключенной между его сторонами.

Кокружности проведена касательная. через точку касания проведена хорда, отрезающая от окружности дуг
4,7(88 оценок)
Ответ:
likaaaasf
likaaaasf
27.03.2020
Заданное выражение (X^2-5x-6)^1/3 * (x^2-8x+16)<0 надо преобразовать.Выражения в скобках разложить на множитель, приравняв нулю и определив корни.
Решаем уравнение x^2-5*x-6=0: 
Квадратное уравнение, решаем относительно x: 
Ищем дискриминант:D=(-5)^2-4*1*(-6)=25-4*(-6)=25-(-4*6)=25-(-24)=25+24=49;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√49-(-5))/(2*1)=(7-(-5))/2=(7+5)/2=12/2=6;
x_2=(-√49-(-5))/(2*1)=(-7-(-5))/2=(-7+5)/2=-2/2=-1.
Поэтому x^2-5*x-6 = (х - 6)(х + 1).
Выражение: x^2-8*x+16 это квадрат выражения :
x^2-8*x+16=(х - 4)².
Исходное выражение преобразовано в такое:
\sqrt[3]{(x-6)(x+1)} *(x-4)^2.
Последнее выражение всегда положительно (оно в квадрате).
Кроме значения х = 4. При этом всё выражение превращается в 0.
Значит, решает всё первая часть - кубический корень из произведения.
Меньше нуля (то есть отрицательным) корень кубический может быть при отрицательном значении подкоренного выражения.
Произведение (х - 6)(х + 1) может быть отрицательным при (-1 < x < 6).
С учётом того, что из этого промежутка для всего выражения выпадает значение х = 4, то ответ:
(-1< x < 4). (4 < x < 6).

Вот конкретные значения заданного неравенства в полученном промежутке:
-2   -1           0             1                2             3       4          5        6      7
72   0    -29.074    -19.390    -9.158    -2.289    0     -1.817    0     18
4,7(11 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ