8. Пусть уравнение имеет корни r и r². Тогда по теореме Виета:
Решим первое уравнение системы:
9. Пусть первое уравнение имеет некоторый корень r. Тогда при подстановке числа 3r во второе уравнение левая часть будет равна нулю. Значит, левая часть первого уравнения при r равна левой части второго уравнения при 3r, и обе они равны нулю. Составим систему из первого уравнения и описанного равенства:
Решение: Высота, опущенная на гипотенузу, делит прямоугольник на два прямоугольных треугольника, где два отрезка гипотенузы прямоугольного треугольника являются проекциями катетов основного прямоугольного треугольника и кроме того они являются катетами двух образовавшихся прямоугольников. Рассмотрим один из прямоугольных треугольников, где высота, опущенная на гипотенузу является катетом (72дм), катет прямоугольника (120дм) является гипотенузой получившегося прямоугольника. По теореме Пифагора найдём другой катет (c) одного из прямоугольников: c²=120²-72² c²=14400-5184 c²=9216 c=√9216=96 (дм) - это одна из проекций катета (первого образовавшегося прямоугольного треугольника) Найдём проекцию второго катета основного прямоугольника: для этого воспользуемся свойством высоты, проведённой к гипотенузе, "высота, проведённая к гипотенузе, есть средне-геометрическое между проекциями катетов гипотенузы." Обозначим проекцию второго катета за (d) Отсюда: 72=√(96*d) 72²=96d 5184=96d d=5184 : 96 d=54 (дм-проекция второго катета) Найдём гипотенузу основного прямоугольника. Она равна сумме двух проекций катетов прямоугольного треугольника: 96+54=150 (дм) Найдём второй катет основного прямоугольника по теореме Пифагора. Известен катет, равный 120дм; гипотенуза 150дм Второй катет (b) основного прямоугольника равен: b²=150²-120² b²=22500--14400 b²=8100 b=√8100=90 (дм) - длина второго катета
ответ: Второй катет равен 90дм; проекция второго катета 54дм
8.
9. 0; 2
Объяснение:
8. Пусть уравнение имеет корни r и r². Тогда по теореме Виета:
Решим первое уравнение системы:
9. Пусть первое уравнение имеет некоторый корень r. Тогда при подстановке числа 3r во второе уравнение левая часть будет равна нулю. Значит, левая часть первого уравнения при r равна левой части второго уравнения при 3r, и обе они равны нулю. Составим систему из первого уравнения и описанного равенства: