Пусть рабочий изготовлена Х деталей в день. Тогда он их должен был изготовить за 360/Х дней.
Реально он делал х+20 деталей в день и по условию это заняло на 1,5 дня меньше
\begin{gathered}\frac{360}{x} - \frac{360}{x+20} =1,5 \\ \frac{360(x+20)-360x}{x(x+20)} =1,5 \\ \frac{360x+ 7200 - 360x}{x(x+20)} =1,5 \\ 7200=1,5x (x+20) \\ x^{2} +20x-4800=0 \\\end{gathered}
x
360
−
x+20
360
=1,5
x(x+20)
360(x+20)−360x
=1,5
x(x+20)
360x+7200−360x
=1,5
7200=1,5x(x+20)
x
2
+20x−4800=0
По теореме Винта
х1=-80
Х2=60
ответ: 60.
Пусть функция возрастает на всей области определения.
Предположим, что для некоторых значений аргумента и
выполняется соотношение
. Рассмотрим три ситуации:
1. - но по определению возрастающей функции меньшему значению аргумента соответствует меньшее значение функции:
- противоречие вышеприведенному равенству значений функции
2. - две точки равны между собой, значит и значения функции в них также равны, вышеприведенное равенство выполняется
3. - аналогично, по определению возрастающей функции большему значению аргумента соответствует большее значение функции:
- противоречие вышеприведенному равенству значений функции
Таким образом, при любых не может выполняться равенство
. Это означает, что возрастающая функция не может принимать одно и то же значение в двух различных точках. Или по другому, возрастающая функция принимает каждое свое значение только в одной точке.
Для убывающей функции доказательство аналогичное с той лишь разницей, что случаю соответствует условие
, а случаю
- условие
. Но опять же, разным значениям аргумента не могут соответствовать равные значения функции.
ответ: 4.5 (кв.ед).
Объяснение:
Вычислите площадь фигуры, ограниченной линиями у=1-х 2, у=-х-1.
--------------------
Решение.
Построим графики функций у=1-х²; у=-х-1.
Пределы интегрирования от -1 до 2. (См. скриншот).
Площадь S=∫₋₁²(1-x²-(-x-1))dx=∫₋₁²(1-x²+x+1)dx=∫₋₁²2dx-∫₋₁²x²dx+∫₋₁²xdx=
=-1/3x³|₋₁²+1/2x²|₋₁²+2x|₋₁²=(-1/3*8+1/2*4+2*2) - (-1/3*(-1)+1/2*1+2(-1)) =
=9/2=4.5 (кв.ед).