М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
кисел5467
кисел5467
12.11.2022 03:09 •  Алгебра

Только 4 и 5 ⬆️⬆️⬆️⬆️⬆️⬆️⬆️


Только 4 и 5 ⬆️⬆️⬆️⬆️⬆️⬆️⬆️

👇
Ответ:
kitsrarr
kitsrarr
12.11.2022

4)\dfrac{Sin\alpha}{1+Cos\alpha } =\dfrac{1-Cos\alpha }{Sin\alpha}dfrac{Sin\alpha}{1+Cos\alpha } -\dfrac{1-Cos\alpha }{Sin\alpha }=\dfrac{Sin\alpha\cdot Sin\alpha-(1+Cos\alpha)\cdot(1-Cos\alpha)}{Sin\alpha\cdot(1+Cos\alpha)} ==\dfrac{Sin^{2}\alpha-1+Cos^{2}\alpha}{Sin\alpha\cdot(1+Cos\alpha)}=\dfrac{1-1}{Sin\alpha\cdot(1+Cos\alpha)}=\boxed0

Если разность левой и провой частей тождества равна нулю, то они равны . Тождество доказано .

5)Sin^{6}\alpha +Cos^{6}\alpha+3Sin^{2}\alpha Cos^{2}\alpha=1(Sin^{2}\alpha )^{3}+(Cos^{2}\alpha )^{3}+3Sin^{2}\alpha Cos^{2}\alpha==\underbrace{(Sin^{2}\alpha +Cos^{2}\alpha)}_{1}(Sin^{4} \alpha-Sin^{2}\alpha Cos^{2}\alpha +Cos^{4}\alpha)+3Sin^{2}\alpha Cos^{2}\alpha==Sin^{4} \alpha-Sin^{2}\alpha Cos^{2}\alpha +Cos^{4}\alpha+3Sin^{2}\alpha Cos^{2}\alpha==Sin^{4} \alpha+2Sin^{2}\alpha Cos^{2}\alpha +Cos^{4}\alpha=(Sin^{2}\alpha+Cos^{2}\alpha)^{2}=11=1

Тождество доказано

4,8(97 оценок)
Открыть все ответы
Ответ:
vzlomhanter230
vzlomhanter230
12.11.2022
Требуется найти критические точки функции, которые определяются производной, приравненной к 0:
y' = x²-2x = х(х-2) = 0.
Отсюда 2 корня: х₁ = 0
                               х₂ = 2.
Теперь надо определить, где минимум, а где максимум,
Если при прохождении через критическую точку  производная меняет знак с минуса на плюс, то есть это будет минимум, а если меняет знак с плюса на минус, соответственно это будет максимум. 
Найдём значения производной при х = -1 и х = 1
х = -1  y' = (-1)²-2*(-1) = 1+2 = 3.
x = 1   y' = 1²-2*1 = 1-2 = -1.
Знак меняется с + на -  (это максимум).
Так же надо поступить и с второй точкой.
В приложении даётся график для наглядности определения точек.
Найдите наибольшее и наименьшее значение функции : у=1/3 х^3-x^2+1 на отрезке (-1; 3)
4,7(35 оценок)
Ответ:
PilkaPie
PilkaPie
12.11.2022
Для начала найдём частные производные 1-ого порядка. Всего их 3(т.к. 3 переменные).

u'_x=(xz*tg\sqrt{y})'_x=z*tg\sqrt{y}
u'_y=(xz*tg\sqrt{y})'_y=xz*\frac{1}{cos^2\sqrt{y}}*(\sqrt{y})'=\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})}\\u'_z=(xz*tg\sqrt{y})'_z=xtg\sqrt{y}

Когда мы считаем производную по какой-то переменной, то мы считаем что все остальные переменные независимые. К примеру:
w=2x\rightarrow w'_x=2\\w=yx\rightarrow w'_x=y\ \ \ (w'_y=x)\\w=y+x\rightarrow w'_x=1\ \ \ (w'_y=1)
Грубо говоря когда мы ищем производную по x, мы считаем что у это какое-то число. Надеюсь это понятно.

Теперь частные производные второго порядка.
Рассмотрим производную по х. Во второй раз мы может взять её опять же  по 3 переменным.
u''_{x^2}=(z*tg\sqrt{y})'_x=0\\u''_{xy}=(z*tg\sqrt{y})'_y=\frac{z}{2\sqrt{y}*cos^2\sqrt{y}}\\u''_{xz}=(z*tg\sqrt{y})'_z=tg\sqrt{y}

Теперь рассматриваем производную по у. Её  2-уй производную берём снова по 3-ём переменным.
u''_{yx}=(\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})})'_x=\frac{z}{2\sqrt{y}*cos^2(\sqrt{y})}

u''_{y^2}=(\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})})'_y=\frac{(xz)'_y*2\sqrt{y}*cos^2(\sqrt{y})-xz*(2\sqrt{y}*cos^2(\sqrt{y}))'_y}{(2\sqrt{y}*cos^2(\sqrt{y}))^2}=\\=\frac{-2xz*(\frac{1}{2\sqrt{y}}*cos^2(\sqrt{y})+\sqrt{y}*2cos(\sqrt{y})*(-sin\sqrt{y})*\frac{1}{2\sqrt{y}})}{4ycos^4(\sqrt{y})}=\\=\frac{-2xz*\frac{cos\sqrt{y}}{2\sqrt{y}}(cos(\sqrt{y})-2\sqrt{y}sin(\sqrt{y}))}{4ycos^4(\sqrt{y})}=\frac{-xz(cos(\sqrt{y})-2\sqrt{y}sin(\sqrt{y}))}{4\sqrt{y^3}cos^3(\sqrt{y})}\\

u''_{yz}=(\frac{xz}{2\sqrt{y}*cos^2(\sqrt{y})})'_z=\frac{x}{2\sqrt{y}*cos^2(\sqrt{y})}

Заметим что:
u''_{xy}=u''_{yx}
Такие равенства выполняются и для других смешанных производный, то есть:u''_{xz}=u''_{zx}

И наконец рассмотрим производную по z. Опять же 3 варианта. Но теперь мы воспользуемся равенством рассмотренным выше.
u''_{zx}=u''_{xz}=tg\sqrt{y}\\u''_{zy}=u''_{yz}=\frac{x}{2\sqrt{y}*cos^2(\sqrt{y})}\\u''_{z^2}=(xtg(\sqrt{x}))'_z=0

Ну вот и всё. Будут вопросы - спрашивайте.
4,5(3 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ