Итак. мы имеем произведение двух множителей. оно может быть больше либо равным нулю,если 1) оба множителя больше нуля. 2) оба множителя меньше нуля. но! log5 не может быть меньше нуля. в какую степень нужно возвести 5чтобы получить отрицательное число? да ни в какую. не получится просто. 3) один из множителей равен 0. т.е. либо х-1=0. либо логарифм равен нулю. если логарифм равен нулю,то 5^0=1. т.е. 4-х=1
все эти условия можно записать в виде системы. т.е. х-1 либо больше нуля,либо равен нулю. и одз логарифма 4-х>0 сюда же входит случай,когда логарифм равен нулю. решение записано на листочке. т к. у нас спрашивают количество целых решений. просто посчитаем их на получившемся промежутке. сюда вхрдТ точки 1,2,3. точка 4 в промежуток не включена. ответ :3 решения
16^ (Sin xCos x) = (4)^-√3Sin x 4^2Sin xCos x = 4^ - √3Sin x 2Sin xCos x = -√3Sin x 2Sin x Cos x +√3Sin x = 0 Sinx( 2Cos x + √3) = 0 а) Sin x = 0 или б) 2Cos x + √3 = 0 x = πn,где n∈Z 2Cos x = -√3 Cos x = - √3/2 x = +- arcCos(-√3/2) + 2πk,где к ∈Z x = +- 5π/6 + 2πк, где к∈Z Теперь ищем корни на отрезке [ 2π; 7π/2] a) n =1 б) k = 1 x = π x = 5π/ 6 + 2π n = 2 х = -5π/6 + 2π x = 2π k = 2 n = 3 x = 5π/6 + 4π x = 3π x = - 5π/6 + 4π = 19π/6 n = 4 k = 3 x = 4π x = 5π/6 + 6 π
1) оба множителя больше нуля.
2) оба множителя меньше нуля. но! log5 не может быть меньше нуля. в какую степень нужно возвести 5чтобы получить отрицательное число? да ни в какую. не получится просто.
3) один из множителей равен 0. т.е. либо х-1=0. либо логарифм равен нулю. если логарифм равен нулю,то 5^0=1. т.е. 4-х=1
все эти условия можно записать в виде системы. т.е. х-1 либо больше нуля,либо равен нулю. и одз логарифма 4-х>0 сюда же входит случай,когда логарифм равен нулю.
решение записано на листочке. т к. у нас спрашивают количество целых решений. просто посчитаем их на получившемся промежутке. сюда вхрдТ точки 1,2,3. точка 4 в промежуток не включена.
ответ :3 решения