1-я задача:
Обозначим за x вес Вали;
Соответственно, вес Миши: 1,7x;
А вес Марины: x-1,8;
Составим уравнение:
x+1,7x+x-1,8=238,7;
3,7x=240,5
x=65 кг, вес Вали.
Вес Миши: 1,7*65=110,5 кг.
Вес Марины: 65-1,8=63,2 кг.
2-я задача:
Обозначим за x кол-во грибов, которые собрал Антон;
x/3 - кол-во грибов, собранных Таней.
x-54 - кол-во грибов, собранных Дашей.
Составим уравнение:
x+x/3+x-54=450.
3x+x+3x-162=1350;
7x=1512;
x=216 грибов собрал Антон.
216/3=72 гриба собрала Таня.
216-54=162 гриба собрала Даша.
1-я задача:
Обозначим за x вес Вали;
Соответственно, вес Миши: 1,7x;
А вес Марины: x-1,8;
Составим уравнение:
x+1,7x+x-1,8=238,7;
3,7x=240,5
x=65 кг, вес Вали.
Вес Миши: 1,7*65=110,5 кг.
Вес Марины: 65-1,8=63,2 кг.
2-я задача:
Обозначим за x кол-во грибов, которые собрал Антон;
x/3 - кол-во грибов, собранных Таней.
x-54 - кол-во грибов, собранных Дашей.
Составим уравнение:
x+x/3+x-54=450.
3x+x+3x-162=1350;
7x=1512;
x=216 грибов собрал Антон.
216/3=72 гриба собрала Таня.
216-54=162 гриба собрала Даша.
Доказательство сводится к применении готовых формул для косинуса суммы и косинуса разности двух углов:
cos (a + b) = cos a * cos b – sin a * sin b;
cos (a - b) = cos a * cos b + sin a * sin b;
Подставляем правые части равенств в левую часть тождества, которое нужно доказать. Эти части отличаются только знаками произведений sin a * sin b.
сos a * cos b – sin a * sin b + cos a * cos b + sin a * sin b =
= 2cos a * cos b.