Дробь — это выражение вида рq , где р и q — многочлены; р — числитель, а q — знаменатель дроби. например: a−bb 2−1 где p = a−b , а q = b 2−1 ; x 2+3y 3+x где p = x 2+3 , а q = y 3+x ; y 2−1y−1 где p = y 2−1 , а q = y−1 . многочлен — это частный случай дроби. например, многочлен y 3+2y+7 равен дроби y 3+2y+71 , а дробь 3x 2+5x−15 можно записать в виде многочлена 35x 2+x− 15 . из курса мы знаем, что значение обыкновенной дроби не изменится, если ее числитель и знаменатель одновременно умножить или разделить на одно и то же отличное от нуля число. например: 35 = 3•25•2 = 610 . дроби можно преобразовывать аналогичным способом: числитель и знаменатель дроби можно умножить на один и тот же многочлен (в частности, на один и тот же одночлен, на одно и то же отличное от нуля число); это — тождественное преобразование заданной дроби; числитель и знаменатель дроби можно разделить на один и тот же многочлен (в частности, на один и тот же одночлен, на одно и то же отличное от нуля число); это — тождественное преобразование заданной дроби, его называют сокращением дроби. данные правила называют основным свойством дроби. рассмотрим примеры. дробь x 2−xx 2 можно заменить на x−1x (числитель и знаменатель разделили на x ). дробь x 2+3xy+1 можно заменить на x 3+3x 2xy+x (числитель и знаменатель умножили на x ). дробь y 2−6y+9y 2−9 можно заменить на (y−3) 2(y−3)(y+3) = y−3y+3 (числитель и знаменатель разделили на y−3 ). равенство y 2−6y+9y 2−9 = y−3y+3 называется тождеством, а преобразование дроби y 2−6y+9y 2−9 в дробь y−3y+3— тождественным преобразованием заданной дроби, в данном случае, сокращением дроби. следует помнить, что тождеством наше равенство является при условии, что y ≠ 3 и y ≠ – 3 , так как знаменатель изначальной дроби при данных значениях переменной обращается в нуль и выражение y 2−6y+9y 2−9 теряет смысл.
При разрезании верёвочки длины 1 на равных частей у кваждой будет длина
Для того, чтобы кусочки верёвочки длины 2 после разрезания были бы такой же длины, т.е. нужно разрезать верёвочку длины 2 на частей.
Значит всего будет частей.
Проще говоря, на сколько бы частей не разрезали эти верёвочки, общее число всех кусочков непременно окажется кратным трём, т.е. должно делиться на три. По признаку делимости на три, и сумма цифр такого числа обязательно должна делиться на три.
Если предлагаются варианты ответов: 2014, 2015, 2016, 2017 или 2018, то единственным подходящим вариантом будет 2016, поскольку:
2(х-1)²
Сначала все поделим на 2. Получим: х²-2х+1
Далее найдем корни уравнения по теореме обратной теореме Виета: х1 и х2=1. Значит --- (х-1)². Но не забудем, что вначале мы поделили все на 2!
2×(х-1)²=2х²-4х+2!