x^2+6x+9<0,
(x+3)^2<0,
нет решений; (x+3)^2≥0, x∈R
-x^2+6x-5≥0,
a=-1<0 - ветви параболы направлены вниз, часть параболы над осью Ох (≥0) расположена между корнями,
-x^2+6x-5=0,
x^2-6x+5=0,
по теореме Виета х_1=1, x_2=5,
1≤x≤5,
x∈[1;5]
x^2-4x+3≥0,
a=1>0 - ветви параболы направлены вверх,
x^2-4x+3=0,
x_1=1, x_2=3 - часть параболы над осью Ох расположена вне корней,
x≤1, x≥3,
x∈(-∞;1]U[3;+∞)
x^2-6x+8≤0,
a=1>0 - ветви параболы - вверх,
x^2-6x+8=0,
x_1=2, x_2=4 - часть параболы под осью Ох (≤0) расположена между корнями,
2≤x≤4,
x∈[2;4]
ответ: В 10 классе 8 олимпиад
Объяснение:
С 7 по 11 - это 5 классов. 31:5 =6 и 1 в остатке. Т.е. в среднем, в год 6 олимпиад. Следовательно в 7 классе было меньше 6 олимпиад.
"В 11 классе количество олимпиад, в которых она приняла участие, возросло в 3 раза по сравнению с 7 классом", значит, число олимпиад в 11 классе делится на 3. Можно предположить, что это 9 или 12, тогда в 7 классе было 3 или 4 олимпиады. Проверяем:
классы: 7 8 9 10 11
количество олимпиад: 4 5 6 7 12 = 34 - это минимум при данном предположении - не подходит. Тогда остается в 7 классе - 3 и в 11 - 9 олимпиад. Получаем:
классы: 7 8 9 10 11
количество олимпиад: 3 4 5 6 9 = 27 Надо добавить еще 4. Эти 4 единицы можно добавить в 8, 9 и 10 классы. Тогда получаем:
классы: 7 8 9 10 11
количество олимпиад: 3 5 6 8 9 = 31. А по-другому распределить эти четыре единицы так, что бы "В каждом следующем учебном году она участвовала в бОльшем количестве олимпиад, чем в предыдущем" не получится. Таким образом, ответ: В 10 классе Настя приняла участие в 8 олимпиадах.
Объяснение:
5 целых чисел расположено между числами 3√7 и 7√3 ?