Объяснение:
1 . 5) ( x + 1 )/(x²- xy ) i ( y - 1 )/(xy - y²) ;
y*(x + 1 )/xy(x - y ) i x*(y - 1)/xy(x - y ) ;
6) 6a/(a - 2b) i 3a/( a + b ) ;
6a( a + b )/(a + b)(a - 2b ) i 3a(a - 2b)/(a + b)(a - 2b ) ;
7) ( 1 + c²)/( c² - 16 ) i c/( 4 - c ) ;
( 1 + c²)/( c² - 16 ) i - c(c + 4 )/( c² - 16 ) ;
8) ( 2m + 9 )/(m² + 5m + 25 ) i m/(m - 5 ) ;
(2m + 9 )(m - 5)/(m - 5)(m²+5m +25 ) i m( m²+5m +25 )/(m - 5)(m²+5m +25 ).
ответ: 2^97
Объяснение:
Найдем наибольшую степень двойки что меньше чем 100.
Очевидно что это 2^6=64 (2^7=128>100)
Понятно ,что число содержащее 6 двоек единственно n1=1 .
Теперь разберемся как посчитать число чисел которые кратны только на 2^5 ( не больше чем на эту степень двоек)
Все числа кратные на 2^5 можно записать так:
2^5 ,2^5*2 ;2^5*3 ;2^5*42^5*n . Соответственно из всех n нас интересуют только нечетные , при этих n число будет кратно ровно на 2^5.
Найдем максимальное n, что 32*n<100
Очевидно что nmax=3 (3*32=96) (число нечетных чисел тут равно n2=2)
Для справки сразу скажем ,что число нечетных чисел на интервале от 1 до k равно k/2- если k-четное и (k+1)/2 ,если k-нечетное.
По аналогии посчитаем число таких чисел для 2^4=16
nmax=6 (6*16=96) (число нечетных чисел n3=6/2=3)
Для 2^3=8 :
nmax=12 (8*12=96) (n4=12/2=6)
Для 2^2=4 :
nmax=25 (4*25=100) ( n5=(25+1)/2=13)
Для 2^1=2
nmax=50 (2*50=100) (n6=50/2=25)
Осталось посчитать общее количество двоек:
N=6n1+5n2+4n3+3n4+2n5+n6=6+10+12+18+26+25=97
Значит 100! делится на 2^97.