Площадь уменьшится. к примеру возьмём прямоугольник с длинной 4 , а шириной 3. его площадь s=ab ( площадь равна длинна умножить на ширину ),площадь данного прямоугольника будет равна 3 * 4 = 12. если увеличить длину на 10% , то его длинна будет равна 4 + 10% от 4(10% от 4 = 4 разделить на 100 и умножить на 10 и это равно 0,4 или четыре десятых) следовательно его длинна будет равна 4,4. а так как ширина уменьшилась на 20 % то она будет равна 3 - 20% от 3(20% от 3 равно 3 разделить на 100 и умножить на 20 или просто 3 разделить на 5. 20% от 3 равно 0,6) следовательно его ширина будет равна 3 - 0,6 = 2,4. теперь подсчитаем площадь(2.4 умножить на 4.4 =10,56 ) 10,56 < 12 следовательно при < < длину увеличить на 10%, а ширину уменьшить на 20% в прямоугольнике> > площадь уменьшится
Повозившись немного с выделением полного куба, можно заметить, что здесь выделяется множитель х+у+8, поэтому уравнение можно переписать в виде (x+y+8)((2x-y-8)²+3(y-8)²)=0. Проверяется это раскрытием скобок и делением всего уравнения на 4. Отсюда следует, что либо у=8, х=8, либо х+у=-8. Т.к. х, у - натуральные, то второе невозможно, поэтому наибольшее значение х+у=8+8=16.
По неравенству о средних при любых х,у≥0 получим (x³+y³+8³)/3≥∛(8³x³y³)=8xy. Равенство в неравенстве о средних достигается только при х=у=8. Значит x+у=8+8=16.