Раз наш участок можно будет огородить забором в 300 метров, то его периметр не должен превышать 300.
Пусть
и
- две стороны нашего участка, тогда
.
Площадь прямоугольника - произведение двух смежных его сторон.
Составим функцию площади нашего участка в зависимости, например, от стороны
.

Но
, следовательно, наша функция принимает вид

С производной найдём экстремум данной функции.

Т.к. исходная функция - парабола с опущенными вниз ветвями, то данная точка - максимум функции. Следовательно, при условии периметра в 300 метров, для достижения наибольшей площади участка одна из сторон должна быть равна 75 метров, значит, другая сторона также должна быть 75 метров (
).
Получаем максимальную площадь
квадратных метров.
ответ.
кв. м.
При x>0 функция в левой части возрастает, а функция в правой части убывает, значит их графики пересекаются лишь в одной точке, ясно что эта точка - x=25. При этом очевидно, что всюду ЛЕВЕЕ этой точки график функции 27-x лежит выше графика функции логарифма на координантной плоскости. Ну ясно же, один график шел снизу вверх (логарифм), а другой сверху вниз (27-x), в этой точке они пересеклись и для x>25 уже наоборот график логарифма будет лежать выше.
Поэтому ответ: 0<x≤25
"Расписать подробно":
Функция
определена при x>0 и монотонно возрастает, так как основание логарифма больше 1.
Функция g(x)=27-x убывает, так как (27-x)'=-1
x=25 - корень уравнения f(x)=g(x). Причем корень единственный, это следует из выше написанного.
Тогда очевидно, что f(x)≤g(x) при 0<x≤25
P.S.
Функции тут простые, поэтому можно вообще забить на аналитическое решение и его обоснование, а решить графически. Начертить графики и на чертеже сразу будет видно то, что аналитически приходится доказывать с свойств функций.
1)y=2x^3-6x^2-18x+7
y'=6x^2-12x-18
6x^2-12x-18=0
d=144+432=24 в квадрате
x=-1
x=3:
-13
находим функцию в нуле(y'(0))
y'=-18 следовательно получаем знак минут между -1 и 3
-1__-__3
а с других сторон +
___+___-1___-___3__+__
и получаем:
при x принадлежащем от [минус бесконечности;-1] и [3; до плюс бесконечности] функция возрастает.
при x принадлежащем от [-1;3] функция убывает.
2)y=3x^4-8x^3+6x^2+5 на [-2;1]
находим производную
y'=12x^3-24x^2+12x
выносим x
y'=x(12x^2-24x+12)
приравниваем к нулю:
x(12x^2-24x+12)=0
x=0
12x^2-24x+12=0
считаем дискриминант и получаем,что дискр равен нулю и 1 равный корень(петля)
x=1
Все корни:
x=0
x=1(петля)
строим ось
с границами:
-21
ставим наши значения:
-21
-20___1
Считаем функцию от:
-2,0,1
Т.е подставляем сюда наши значения:
3x^4-8x^3+6x^2+5
я считаю в паскале(посчитаете,вручную сами)
y(-2)=141
y(0)=5
y(1)=6
Следовательно:
Наиб значение 141
Наим значение 5