М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
максим5695
максим5695
11.01.2022 08:44 •  Алгебра

Здраствуйте,решите линейное уравнение. 5(х-2)-3(х+1)=6х

Я не могу понять уравнения,сколько бы тем и видео уроков не смотрела ,если можно с объяснениями,последняя надежда что тут.

👇
Ответ:

по моему это так если не правильно прости


Здраствуйте,решите линейное уравнение. 5(х-2)-3(х+1)=6х Я не могу понять уравнения,сколько бы тем и
4,4(87 оценок)
Ответ:
DimaNewPARK
DimaNewPARK
11.01.2022

для начала раскрываешь скобки.

5(х-2)-3(х+1)=6х

5х-10-3х-3=6х.

- на - всегда будет +

- на + будет -

+ на - будет -

+ на + будет +

так вот, после раскрытия скобок

считаем дальше

5х-3х= 2х

-10-3=-13

осталось ещё 6х, его мы переносим на другую часть, соответственно меняется его знак. то есть 6х=как+6х, если переносим, то знак меняется и становится -6х

получается

2х-6х=13 (заметь, было -13, но из-за того, что перенесли на другую часть, его знак поменялся, и стал +13

считаем

-4х=13

х=13:(-4)=-3,25

ответ: х=-3,25


Здраствуйте,решите линейное уравнение. 5(х-2)-3(х+1)=6х Я не могу понять уравнения,сколько бы тем и
4,6(53 оценок)
Открыть все ответы
Ответ:
alicemuhametp0aof9
alicemuhametp0aof9
11.01.2022

В обеих точках функция непрерывна

Объяснение:

Для ответа на данный вопрос найдём пределы слева и справа от указанных точек, если пределы совпадают, то функция в данной точке непрерывна, если не совпадают, то функция имеет разрыв первого рода, а если хотя бы один из пределов равен бесконечности или не существует, то в данной точке функция имеет разрыв второго рода.

для x = 0

\lim_{x \to 0+} (3sin(\pi x) - 5cos(2\pi x) = -5\\ \lim_{x \to 0-} (3sin(\pi x) - 5cos(2\pi x) = -5

Как видим, пределы слева и справа совпадают, следовательно f(0) непрерывна

для x = 1

\lim_{x \to 1+} (3sin(\pi x) - 5cos(2\pi x) = -5\\ \lim_{x \to 1-} (3sin(\pi x) - 5cos(2\pi x) = -5

Снова видим, что пределы совпадают, следовательно и при f(1) функция непрерывна.

4,4(8 оценок)
Ответ:
Danfdffefd
Danfdffefd
11.01.2022
Исходное неравенство распадается на совокупность систем:

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ 1 \leq 3-x \leq 5 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 1 \leq x-3 \leq 5 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ -5 \leq x-3 \leq -1 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 1+3 \leq x \leq 5+3 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 3 \ , \\ -2 \leq x \leq 2 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 3 \ , \\ 4 \leq x \leq 8 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} x \in [ -2 ; 2 ] \ , \\ x \in [ 4 ; 8 ] \ ; \end{array}\right

x \in [ -2 ; 2 ] \cup [ 4 ; 8 ] \ ;

а) неравенство эквивалентно:

-2 \leq x \leq 2 \ ;

x \in [ -2 ; 2 ] \ ;

Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .

о т в е т :    \frac{1}{2} = 0.5 = 50 \% \ ;

б) неравенство эквивалентно:

-2 \leq x-6 \leq 2 \ ;

6-2 \leq x \leq 2+6 \ ;

x \in [ 4 ; 8 ] \ ;

Отрезок данного решения полностью совпадает с одним из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет 1/2 .

о т в е т :    \frac{1}{2} = 0.5 = 50 \% \ ;

в) неравенство эквивалентно:

-1 \leq x \leq 1 \ ;

x \in [ -1 ; 1 ] \ ;

Отрезок данного решения составляет половину от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} = 0.25 = 25 \% \ ;

о т в е т :    \frac{1}{4} = 0.25 = 25 \% \ ;

г) неравенство распадается на совокупность систем:

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ 1 \leq 6-x \leq 2 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 1 \leq x-6 \leq 2 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ -2 \leq x-6 \leq -1 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 1+6 \leq x \leq 2+6 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} \left\{\begin{array}{l} x < 6 \ , \\ 4 \leq x \leq 5 \ ; \end{array}\right \\\\ \left\{\begin{array}{l} x \geq 6 \ , \\ 7 \leq x \leq 8 \ ; \end{array}\right \end{array}\right

\left[\begin{array}{l} x \in [ 4 ; 5 ] \ , \\ x \in [ 7 ; 8 ] \ ; \end{array}\right

x \in [ 4 ; 5 ] \cup [ 7 ; 8 ] \ ;

Каждый из двух отрезков данного решения составляет четверть от одного из равных (по дине) отрезков, которые генерируют переменную. А значит, вероятность составляет    \frac{1}{4} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8} + \frac{1}{8} = \frac{1}{4} = 0.25 = 25 \% \ ;

о т в е т :    \frac{1}{4} = 0.25 = 25 \% \ ;
4,4(14 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ