Объяснение:
Общий вид линейной функции: у = kx + b
Коэффициент k в построении графика линейной функции отвечает за угол наклона прямой к положительному направлению оси Ох.
Свободный член b отвечает за смещение графика вдоль оси Оу путем параллельного переноса.
Дано: у = 8х + 3.
а) Чтобы график функции был параллелен графику данной функции, необходимо изменить только свободный член b. Причем число b может быть как положительным, так и отрицательным, либо нулем.
Например,
у = 3х + 17;
у = 3х - 29.
б) Чтобы график функции пересекал график данной функции, у него должен отличаться угол наклона к положительному направлению оси Ох. Следовательно в функции нужно заменить коэффициент а. Свободный член b можно менять, а можно оставить таким, какой он есть.
Например,
у = 7х + 5;
у = -12х - 11.
в) Общий вид линейной функции, график которой проходит через начало координат: у = kx.
Т.е. в формуле отсутствует свободный член b.
Чтобы график функции был параллелен графику данной функции, коэффициент а должен остаться таким же.
-19 = 8x - 3
-8х = -3 + 19
-8х = 16 |:(-8)
x = -2
2) приравниваем её к нулю и решаем получившееся уравнение
3) Смотрим: какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах данного отрезка;
4) пишем ответ.
Поехали?
1) f'(x) = ((x² -8x)'(x+1) - (x² -8x)(x+1)')/(x+1)²=
((2x-8)(x+1) - (x²-8x))/(x+1)²= (2x² -8x +2x -8 - x² +8x)/(x+1)²=
=(x² +2x -8) / (х+1)²
2)(x² +2x -8) / (х+1)² ⇒ x² +2x -8 =0, ⇒ х = - 4 и х = 2
3) Из найденных корней в указанный промежуток попало х = -4
а) х = -4
f(-4) = (-4)² -8*(-4) /(-4+1) = 48/(-2) = -24
б) х = -5
f(-5) = (-5)² -8*(-5) /(-5+1) = 65/(-4) = -13,75
в) х = -2
f(-2) = (-2)² -8*(-2)/(-2+1) = 20/(-1) = -20
4) maxf(x) = f((-2) = -20
minf(x) = f(-4) = -24