Всего существует 10 цифр : 0,1,2,3,4,5,6,7,8,9 Две цифры 1 и 2 - "заняты". Остаётся ровно 8 цифр (10-2=8).
Начинаем составлять трёхзначные цифры. Пусть место сотен займёт цифра 1 (один вариант), место десятков - цифра 2 (один вариант), тогда на место единиц можно будет поставить любую из восьми оставшихся цифр (8 вариант). Перемножаем полученные варианты получаем 1*1*8 = 8 таких чисел Учитываем, что 1 и 2 можно поменять местами и получаем 2*8=16 таких чисел.
Далее, аналогично: Пусть место сотен займёт цифра 1 (один вариант), место единиц - цифра 2 (один вариант), тогда на место десятков можно будет поставить любую из восьми оставшихся цифр (8 вариант). Перемножаем полученные варианты получаем 1*8*1= 8 таких чисел Учитываем, что 1 и 2 можно поменять местами и получаем 2*8=16 таких чисел.
Далее, Пусть место десятков займёт цифра 1 (один вариант), место единиц - цифра 2 (один вариант), тогда на место сотен можно будет поставить любую из семи оставшихся цифр - ноль нельзя ставить на место сотен (7 вариант). Перемножаем полученные варианты получаем 7*1*1 = 7 таких чисел Учитываем, что 1 и 2 можно поменять местами и получаем 2*7=14 таких чисел.
Теперь осталось сложить все полученные результаты: 16+16+14=46 чисел
Для нахождения точек пересечения с осью Х x^4-4x^2=0 х1=0; х2=2; х3=-2; Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0 f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0 Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2) теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум -2^0.5 0 2^0.5 ---*---о*о*---о*-- -2 -1 1 2
x=0 => y= 0 x=-2^0.5 => y= -4 x=2^0.5 => y= -4
x=-2 => y= 0 x=-1 => y=-3 x=1 => y=-3 x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум. Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум. Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено Точки пересечения с осью Х х1=0; х2=2; х3=-2; Минимум (-2^0.5;-4) и (2^0.5;-4) Максимум (0;0)
Две цифры 1 и 2 - "заняты". Остаётся ровно 8 цифр (10-2=8).
Начинаем составлять трёхзначные цифры.
Пусть место сотен займёт цифра 1 (один вариант), место десятков - цифра 2 (один вариант), тогда на место единиц можно будет поставить любую из восьми оставшихся цифр (8 вариант).
Перемножаем полученные варианты получаем 1*1*8 = 8 таких чисел
Учитываем, что 1 и 2 можно поменять местами и получаем 2*8=16 таких чисел.
Далее, аналогично:
Пусть место сотен займёт цифра 1 (один вариант), место единиц - цифра 2 (один вариант), тогда на место десятков можно будет поставить любую из восьми оставшихся цифр (8 вариант).
Перемножаем полученные варианты получаем 1*8*1= 8 таких чисел
Учитываем, что 1 и 2 можно поменять местами и получаем 2*8=16 таких чисел.
Далее,
Пусть место десятков займёт цифра 1 (один вариант), место единиц - цифра 2 (один вариант), тогда на место сотен можно будет поставить любую из семи оставшихся цифр - ноль нельзя ставить на место сотен (7 вариант).
Перемножаем полученные варианты получаем 7*1*1 = 7 таких чисел
Учитываем, что 1 и 2 можно поменять местами и получаем 2*7=14 таких чисел.
Теперь осталось сложить все полученные результаты:
16+16+14=46 чисел
ответ: 46 чисел