Объяснение:
5/8 и 4/9 . Общий знаменатель 8*9=72. Дополнительные множители 9 и 8 соответственно.
45/72 и 32/72.
***
11/24 и 101/180 . Разложим на множители 24= 2*2*2*3; 180=2*2*3*3*5
Общий знаменатель 180*2=360 (недостающий множитель из разложения числа 24). Дополнительные множители 15 и 2 соответственно. получаем
11*15/24*15 и 101*2/180*2.
165/360 и 202/360.
***
5/12 и 23/27. 12=2*2*3. 27=3*3*3. Общий знаменатель 27*4=108. дополнительные множители 108/12=9 и 108/27=4.
Получим: 5*9/12*9 , 23*4/27*4
45/108 и 92/108.
Дано функцію f(x) = (x^2-8x)/(x+1)
Знаходимо найбільше і найменше значення даної функції на проміжку [-5,-2].
f(-5) = ((-5)^2-8*(-5))/(-5+1) = 65/(-4) = -16,25.
f(-2) = ((-2)^2-8*(-2))/(-2+1) = 20/(-1) = -20.
Визначаємо точки екстремуму даної функції.
Знаходимо первісну:
f'(x) = (2x-8)*(x+1) - 1*(x^2-8x))/((x+1)^2) = (x^2 + 2x - 8)/((x + 1)^2).
Прирівнюємо їі до 0 (достатьно чисельник):
x^2 + 2x - 8 = 0, Д = 4+4*8 = 36, х1 = (-2 - 6)/2 = -4, х2 = (-2 + 6)/2 = 2.
Знаходимо знаки первісної:
х = -5 -4 1 2 3
y' = 0,4375 0 -1,25 0 0,4375 .
У точці х = -4 маємо максимум функції,
f(-4) = ((-4)^2-8*(-4))/(-4+1) = 48/(-3) = -16.
Відповідь:
- найбільше значення даної функції на проміжку [-5,-2] дорівнює -16,
- найменше значення даної функції на проміжку [-5,-2] дорівнює -20,
- максимум функції у точці х = -4,
- мінімум функції у точці х = 2.