Обозначим искомые числа через 10a+b. Тогда при возведении в квадрат по требованию задачи должны выполняться условия: b^2 должно быть числом, оканчивающимся на цифру b. Таких цифр четыре: 0, 1, 5 и 6. Пусть наше число оканчивается на 0. Тогда 2*a*b должно быть числом, оканчивающимся на a, но это невозможно, поскольку b=0. Пусть искомое число оканчивается на 1. Тогда 2*a*b должно быть числом, оканчивающимся на a, но это также невозможно, поскольку число 2*a может оканчиваться на цифру a только при a=0, но a - первая цифра в нашем числе и a ≠ 0. Пусть теперь наше число оканчивается на 5. Тогда должно выполняться условие: число 2*a*b+2 должно оканчиваться на a. Этому условию удовлетворяют a=2, b=5. Т. о. 25^2 = 625 оканчивается на 25. Поскольку последние две цифры в числе будут оставаться 2 и 5, то при возведении в любую натуральную степень соответствующие числа будут оканчиваться на 25. Поэтому число 25 нам подходит. Пусть искомое число оканчивается на 6. Тогда должно соблюдаться 2*a*b+3 должно оканчиваться на a. Т. к. b=6, то a*12+3 оканчивается на a. Отсюда находим, что a=7. Т. о. получаем второе число, которое также при возведении в любую натуральную степень будет оканчиваться на 76. Это единственные два двузначных числа, удовлетворяющие требованиям.
ответ: 25 и 76.
a(a + 5b) - (a + b)(a - b)=a^2+5ab-a^2+b^2=5ab+b^2
b(3a-b) - (a - b)(a + b)=3ab-b^2-a^2+b^2=3ab-a^2
(y+10)(y-2)-4y(2 - 3y)=y^2+8y-20-8y+12y^2=13y^2-20
(a-4)(a+9)-5a(1-2a)=a^2+5a-36-5a+10a^2=11a^2-36
(2b-3)(3b+2)-3b(2b+3)=6b^2-9b+4b-6-6b^2-9b=-14b-6
(3a-1)(2a-3)-2a(3a+5)=6a^2-2a-6a+4-6a^2-10a=-18a+4
(m+3)^2 -(m-2)(m+2)=m^2+6m+9-m^2+4=5m+13
(a-1)^ - (a+1)(a-2)=a^2-2a+1-a^2-a-2=-3a-1
(c+2)(c-3)-(c-1)^2=c^2-c-6-c^2+2c-1=c-7
(y-4)(y+4)-(y-3)^=y^2-16-y^2+6y-9=6y-25
(a-2)(a+4)-(a+1)^ =a^2+2a-8-a^2-2a-1=-9
(b-4)(b+2)-(b-1)^=b^2-2b-8-b^2+2b-1=-9
Объяснение:
1/2•(-3, 6) -5=-6, 8
Объяснение:
1/2=0,5
0,5•(-3,6)=-1,8
-1,8-5=-6,8