Во-первых определимся с понятием : что такое область определения функции? Область определения функции- это значения аргумента ("х"), при которых значения функции имеют смысл( существуют) Короче говоря, нас спрашивают: какие "х" можно брать, чтобы значение функции можно было вычислить. А мы ведь умные(правда?) и знаем, что: 1) делить на 0 нельзя;2) корень квадратный из отрицательного числа не существуют , ну и т.д. а) у = √(х +3)(9 -х) У нас как раз квадратный корень. А это значит, что (х+3)(9-х) ≥ 0. Решаем это неравенство методом интервалов.Ищем нули множителей. х+3 = 0, ⇒ х = -3 9 -х = 0,⇒ х = 9 -∞ -3 9 +∞ - + + это знаки (х +3) + + - это знаки (9 -х) Это решение неравенства ответ: х∈ [ -3; 9] б) у = (5х³ -2х)/√(х² -11х +28) Рассуждаем аналогично. числитель существует ( можно посчитать значение) при любом "х" в знаменателе стоит квадратный корень. Он существует только при неотрицательных "х", но он стоит в знаменателе (делить на 0 нельзя) Значит, нам предстоит решить неравенство: х² - 11х +28 > 0 По т. Виета ищем корни х₁=4, х₂ = 7 ответ: х∈(-∞; 4)∪(7; +∞)
Дробь может быть больше нулятолько тогда когда1. И числитель и знаменатель меньше нуля.2. И числитель и знаменатель больше нуля. Так как знаменатель в данном случае число 4 (положительное),то для того чтобы дробь была положительна, надо чтобы и числитель был больше нуля. Значит, ищем такие Х при которых-х-4>0прибавим к обеим частям неравенства 4.В народе говорят "перенесем 4 с противоположным знаком через знак неравенства"-х>4Теперь умножим обе части неравнества на "-1".
Как известно, знак неравенства при этом действии следует
сменить на противоположный.
Получаем, x<-4
при х<-4 функция принимает положительные значения.
9*7=63
Цифрой 3