Парабола. Направление "ветвей" зависит от коэффициента a, если он > 0, то ветви направлены вверх, если <0 - вниз. Приравняв функцию к нулю, с дискриминанта и формул корней квадратного уравнения найдем точки пересечения с осью абсцисс (Ox) Формула вершины параболы (координата по Х) -b\2a. Найдя координату по х, подставим ее в исходную функцию, получим координату по Y. (там есть отдельная формула, но кому она нужна) Для дополнительной точности можем найти значения функции в окрестностях корней, но это уже на любителя. В итоге получим что-то такое:
Во-первых, обозначим стороны прямоугольника: Пускай длина - a, ширина - b. Если к длине a отнять 4, а к ширине b прибавить 7. То получится квадрат. У квадрата все стороны равны! Обозначим стороны данного квадрата: Длина: a - 4 Ширина: b + 7. Ширина равняется длине у квадрата. Значит:
Еще, знаем что площадь квадрата равна 100. То есть:
Создадим систему уравнений из этих сведений:
Выразим из второго уравнения a:
Подставим в первое уравнение:
Сторона b равняется трём. Есть еще один корень у этого уравнения, но его не рассматриваем, получатся отрицательные значение. Так как, сторона квадрата равна b + 7, то сторона будет 3 + 7, а это 10.
Можем проверить, найдём еще сторону прямоугольника a = b + 11 a = 3 + 11 = 14 Подставим в первое уравнение:
...........................